Use the radioactive decay model of exercise 7 and the rate of decay for C_{14} that you can compute there to determine the "time since death" when the following percentages of C_{14} remain in a given material.
(a) 88%
(b) 12%
(c) 2%
(d) 98%

Solution:

The radioactive decay model is the first-order initial-value problem

$$
\frac{d r}{d t}=-\lambda r \text { and } r(0)=r_{0}
$$

whose solution is

$$
r(t)=r_{0} e^{-\lambda t}
$$

where $r(t)$ represents the amount of the radioactive isotope present at time t and the parameter $-\lambda$ (with $\lambda>0$) represents the decay rate (from exercise 6).

To determine the value of λ for C_{14}, we use that the half-life of C_{14} is 5,230 years, so $r(5,230)=0.5 r_{0}$ and $0.5 r_{0}=r_{0} e^{-\lambda(5,230)} \quad \longrightarrow \quad 0.5=e^{-\lambda(5,230)} \quad \longrightarrow \ln (0.5)=-\lambda(5,230) \quad \longrightarrow \quad \lambda=-\frac{\ln (0.5)}{5,230} \simeq 0.0001325329 \ldots$

Now we can solve for t when $r(t)=0.88 r_{0}$, etc. These values can also be read from an accurate graph of $r(t)=r_{0} e^{-\lambda t}$.
$0.88 r_{0}=r_{0} e^{-\left(-\frac{\ln (0.5)}{5,230}\right) t} \longrightarrow 0.88=e^{\left(\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \ln (0.88)=\left(\frac{\ln (0.5)}{5,230}\right) t \quad \longrightarrow \quad t=\frac{5,230 \ln (0.88)}{\ln (0.5)} \simeq 965$ years
$0.12 r_{0}=r_{0} e^{-\left(-\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \quad 0.12=e^{\left(\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \ln (0.12)=\left(\frac{\ln (0.5)}{5,230}\right) t \quad \longrightarrow \quad t=\frac{5,230 \ln (0.12)}{\ln (0.5)} \simeq 15,998$ years
$0.02 r_{0}=r_{0} e^{-\left(-\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \quad 0.02=e^{\left(\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \ln (0.02)=\left(\frac{\ln (0.5)}{5,230}\right) t \quad \longrightarrow \quad t=\frac{5,230 \ln (0.02)}{\ln (0.5)} \simeq 29,517$ years
$0.98 r_{0}=r_{0} e^{-\left(-\frac{\ln (0.5)}{5,230}\right) t} \longrightarrow 0.98=e^{\left(\frac{\ln (0.5)}{5,230}\right) t} \quad \longrightarrow \ln (0.98)=\left(\frac{\ln (0.5)}{5,230}\right) t \quad \longrightarrow \quad t=\frac{5,230 \ln (0.98)}{\ln (0.5)} \simeq 152$ years

