8/26/2016

WEW PERSPECTIVES

Unit Contents

Unit 1;‘- »Section A: Program Development
Programming > Section B: Programming Tools
Computer COﬂCGptS 2016 >Sect!on C: Prqcedurgl Programming
»Section D: Object-Oriented Code

»Section E: Declarative Programming

Unit 11: Programming 2

Section A: Program Development Programming Basics
H i » Computer programming encompasses a broad set of
> Prog ramming B_aSICS activities that include planning, coding, testing, and
»Program Planning documenting
. » Arelated activity, software engineering, is a development
»Program Coding process that uses mathematical, engineering, and

management techniques to reduce the cost and complexity
of a computer program while increasing its reliability and
modifiability

» The instructions that make up a computer program are
referred to as code because program instructions for first-
generation computers were entered in binary codes

»Program Testing and Documentation

Unit 11: Programming 3 Unit 11: Programming 4

Programming Basics Programming Basics

FIGURE 11-1: A PROGRAM WRITTEN USING THE PYTHON PROGRAMMING LANGUAGE \; Programmers typ|ca||y spec|al|ze |n e|ther
_ application programming or system

s ok for docameniiion. | development

e »Application programmers create

]
These values are initially set to 0. inches = 0.0

————— =00 productivity applications such as Microsoft
’»ge:«o: PR print ("Convert Inches to Centimeters.") Ofﬂce
The program asks the user to . g .

inches = input (“Enter langth in inches:) »Systems programmers specialize in

developing system software such as
operating systems, device drivers, security
e) modules, and communications software

Unit 11: Programming Unit 11: Programming 6

centimeters = 2.54 * inches

8/26/2016

Program Planning

> In the context of programming, a problem
statement defines certain elements that must
be manipulated to achieve a result or goal

» A good problem statement for a computer
program has three characteristics:

» It specifies any assumptions that define the
scope of the problem

> It clearly specifies the known information
> It specifies when the problem has been solved

Unit 11: Programming 7

Program Planning

»In a problem statement, an assumption is
something you accept as true in order to
proceed with program planning

»The know information in a problem
statement is the information that is supplied
to the computer to help it solve a problem

» After identifying the known information, a
programmer must specify how to determine
when the problem has been solved

Unit 11: Programming 8

Program Planning

» Several software development methodologies exist
to help program designers and coders plan,
execute, and test software

» Methodologies can be classified as predictive or
agile

» A predictive methodology requires extensive planning
and documentation up front; it's used to construct
buildings and assemble cars—tasks that are well defined
and predictable

» An agile methodology focuses on flexible development
and specifications that evolve as the project progresses

Unit 11: Programming 9

Program Coding

» The core of a computer program is a
sequence of instructions

» A keyword, or command, is a word with a
predefined meaning

» Keywords differ depending on the
programming language; there is a basic
vocabulary that covers most necessary
tasks

Unit 11: Programming 10

Program Coding

FIGURE 11-5: KEYWORDS FOR THE PYTHON PROGRAMMING LANGUAGE

Collect information from the program’s users

Display information on the screen.

Terminate a loop.

Begin a series of commands that will be repeated in a loop.

Cont...

Unit 11: Programming n

Program Coding

Execute one or more instructions only if a specified condition is true

Add more options to extend the If command.

Transfer data from a function to some other part of the program

Define a series of instructions that become a unit called a function

Define an object as a set of attributes and methods.

Unit 11: Programming 12

8/26/2016

Program Coding

» Keywords can be combined with specific
parameters, which provide more detailed
instructions for the computer to carry out

» These parameters include variables and
constants

»A variable represents a value that can change

»A constant is a factor that remains the same
throughout a program

Unit 11: Programming 13

Program Coding

» The set of rules that specify the sequence of
keywords, parameters, and punctuation in a
program instruction is referred to as syntax

FIGURE 11-7: SYNTAX RULES GOVERN PUNCTUATION AND INDENTATION

Variables and keywords Text is surrounded Each instruction is
begin with lowercase letters. by quotation marks. on a separate line.

v v 1

price = input("Enter the pizza price: ")

if price < 10.00: ITh:f\rslIineo‘amulll-inslruc- |

tion statement ends in a colon.

Indents indicate multi- print ("That pizza is cheap!")
line instructions.

Unit 11: Programming 14

Program Coding

» You may be able to use a text editor, program
editor, or graphical user interface to code
computer programs

» A text editor is any word processor that can be
used for basic text editing tasks, such as writing
email, creating documents, and coding computer
programs

> A program editor is a type of text editor specially
designed for entering code for computer
programs

Unit 11: Programming 15

Program Testing and Documentation

» Programs that don’t work correctly might crash,
run forever, or provide inaccurate results; when a
program isn’t working, it's usually the result of a
runtime, logic, or syntax error
»A runtime error occurs when a program runs
instructions that the computer can’t execute
»Alogic error is a type of runtime error in the
logic or design of the program

»A syntax error occurs when an instruction
does not follow the syntax rules of the
programming language

Unit 11: Programming 16

Program Testing and Documentation

FIGURE 11-10: common synTax errors ® Omitting a keyword, such as ELSE

* Misspelling a keyword, such as
s mistakenly typing PIRNT instead of
: PRINT

* Omitting required punctuation, such
as a period, comma, or bracket

|

® Using incorrect punctuation, such as
typing a colon where a semicolon is
required

* Forgetting to close parentheses

Unit 11: Programming 17

Program Testing and Documentation

» Programs need to meet performance,
usability, and security standards
»Performance — programmers need to carry out
real-world tests to ensure that programs don’t
take too long to load

»Usability — programs should be easy to learn
and use and be efficient

»Security — program specifications are formulated
to so programmers remain aware of security
throughout the software development life cycle

Unit 11: Programming 18

8/26/2016

Program Testing and Documentation

» Techniques associated with defensive programming include:

® Source code walkthroughs. Open source software goes through exten-
sive public scrutiny that can identify security holes, but proprietary software
can also benefit from a walkthrough with other in-house programmers.

e Simplification. Complex code is more difficult to debug than simpler
code. Simplifying complex sections of code can sometimes reduce a pro-
gram’s vulnerability to attacks.

® Filtering input. Itis dangerous to assume that users will enter valid input.
Attackers have become experts at concocting input that causes buffer over-
flows and runs rogue HTML scripts. Programmers should use a tight set of
filters on all input fields.

Unit 11: Programming

Unit 11: Programming

Section B: Programming Tools

»Language Evolution
»Compilers and Interpreters
»Paradigms and Languages
»Toolsets

Language Evolution

» When applied to programming languages,
abstraction inserts a buffer between
programmers and the chip-level details of
instruction sets and binary data
representation

» For programming languages, abstraction
automates hardware-level details, such as
how to move data from memory to the
processor

Unit 11: Programming

Unit 11: Programming

Language Evolution

» A low-level language has a low level of
abstraction because it includes commands
specific to a particular CPU or
microprocessor family

» A high-level language uses command
words and grammar based on human
languages to provide a level of abstraction
that hides the underlying low-level language

Language Evolution

total=5 + 4

Programmers using high-level
languages are buffered from the
hardware details by levels of
abstraction. Only one instruction is
needed, and the programmer does
not have to specify the registers
where the numbers are located

Programmers using low-level
languages have to deal with
hardware-level tasks, such as
loading data into registers of the
processor with the following code:
MOV REG1

MOV REG2

ADD REG1, REG2 FIGURE 11-14: HIGH-LEVEL LANGUAGES SIMPLIFY BY USING ABSTRACTION

Unit 11: Programming

Language Evolution

» First-generation languages are the fist
machine languages programmers used

»Second-generation languages added a level
of abstraction to machine languages by
substituting abbreviated command words for
binary numbers

»Third-generation languages were conceived
in the 1950s and used easy-to-remember
command words, such as PRINT and INPUT

Unit 11: Programming 2%

8/26/2016

Language Evolution

» An assembly language is classified as a low-
level language because it is machine specific
» An assembler typically reads a program written in
an assembly language, which has two parts: the
op code and the operand
»An op code, which is short for operation code,
is a command word for an operation such as
add, compare, or jump
»The operand for an instruction specifies the
data for the operation

Unit 11: Programming

Language Evolution

»Look at the parts of an assembly language
shown in figure 11-15—consider how tedious
it would be to write a program consisting of
thousands of these concise, but cryptic, op
codes:

FIGURE 11-15; ASSEMBLY LANGUAGE INSTRUCTION TO PLACE 5 IN REGISTER EAX

MOV eax

T?T

I Op code I I Operands

Unit 11: Programming

Language Evolution

»Fourth-generation languages are
considered “high-level” languages, and more
closely resemble human languages

» The computer language Prolog, based on a
declarative programming paradigm, is
identified as a fifth-generation language—

though some experts disagree with this
classification

Unit 11: Programming

Language Evolution

FIGURE 11-17: FOURTH-GENERATION LANGUAGES HAVE SIMPLE SYNTAX
SORT TABLE Kids on Lastname

nt, inlow As Long, inMi As Long)

ds ((inkow + inhi) \ 2)
WHILE (tmplow <= tmpdi

WHILE (Kida (tmplow) < pivot And tmplow < inii)
taplow = tmplow + 1

WILE (pivot < Kids(tapii) Md taphi > inlew)
oo
= :.mm <= tapHz) THEN

tpSwap = Kids (tmpLow)

Kids (tmplow) = Kida (taphi)

Kids (tuphi) = topSwap

taplow = taplow +

tnpii) THEN Sort Kids, inlow, tmphs
IF (taplow < ARi) THEN Sort Kids, tmplow, et
0O sus

Unit 11: Programming

Compilers and Interpreters

» The human-readable version of a program

created in a high-level language by a programmer
is called source code

» Source code must first be translated into machine

language using a compiler or interpreter

» A compiler converts all the statements in a program in
a single batch, and the resulting collection of
instructions, called object code, is placed in a new file

» An interpreter converts and executes one statement at
a time while the program is running; once executed, the
interpreter converts and executes the next statement

Unit 11: Programming

Compilers and Interpreters

FIGURE 11-18: A COMPILER CONVERTS SOURCE CODE INTO OBJECT CODE
NewYear py NewYear exe
print ("Happy”) 0001000101011101
year = 2016 1010010101000101
newYear = year + 1 1011010100010100
print (newrear) 1010100010100100
Source code Object code
All statement ompiled into a new
file that cc machine code
FIGURE 11-13: AN INTERPRETER CONVERTS AND EXECUTES EACH STATEMENT
NewYear.py
print ("Happy") BaeRY,
yoar = 2016
newrear = year + 1
print (newYear)
2017
Source code Output

Each statement is cc
code and imme

rted into machine
tely executed
Unit 11: Programming

8/26/2016

Compilers and Interpreters

FIGURE 11-20: COMPILERS DO NOT CREATE OBJECT CODE UNTIL THE SYNTAX IS CORRECT

1 import random
COMPILE ERRORI
2 min=1
_ Traceback (most recent call last):
3 max =6
7 File "python", line 10, in <module>
NameError: name 'man’ is not defined
5 rollAgain = "yes"
6
7 while rollAgain == "yes" or rollAgain == "y"
8 print ("Rolling...")
9 print ("The values are)
10 print (random.randint (man,max))
1 print (random.randint(min,max))
12
13 rollAgain = input("Roll again? ")
Unit 11: Programming 3

Paradigms and Languages

» The phrase programming paradigm refers
to a way of conceptualizing and structuring
the tasks a computer performs

» A programmer uses a programming language
that supports the paradigm

» Other programming languages—referred to
as mulitparadigm languages—support
more than one paradigm

Unit 11: Programming 32

Paradigms and Languages

FIGURE 11-21: PROGRAMMING PARADIGMS

PARADIGM DESCRIPTION

Emphasizes linear steps that provide the computer with
Procedural X g
instructions on how to solve a problem or carry out a task
Formulates programs as a series of objects and methods

Object-oriented that interact to perform a specific task

Focuses on the use of facts and rules to describe a prob-

Declarative
lem
Unit 11: Programming 33
Toolsets

» Serious programmers typically download and install
programming tools; their toolbox may include a compiler, a
debugger, and an editor

» Programmers often download an SDK or IDE that contains a
collection of programming tools

» An SDK (software development kit) is a collection of
language-specific programming tools that enables a
programmer to develop applications for a specific
computer platform

» An IDE (integrated development environment) is a type of
SDK that packages a set of development tools into a
sleek programming application

Unit 11: Programming 35

Paradigms and Languages

» Programmers generally find it useful to classify
languages based on the types of projects for which they
are used

» Some languages are used for Web programming; others
for mobile apps, games, and enterprise applications

» Some of the most commonly used programming

languages include: »Ruby
> Fortran »Prolog »Java
> LISP :{*/écii > JavaScript
N >
» COBOL »Objective-C :(P;:P
- BASIC >Python > Swift
»C »Visual Basic (VB) » perl

Unit 11: Programming 34

Toolsets

D e S =
oW X0 oc HEmob Ol rE FLES T

FIGURE 11-23: THE ANDROID STUDIO IDE

Unit 11: Programming

Section C: Procedural Programming

» Algorithms

»Pseudocode and Flowcharts
»Flow Control

»Procedural Applications

Unit 11: Programming 37

Algorithms

»An algorithm is a set of steps for carrying out a
task that can be written down and implemented

» For example, the algorithm for making macaroni
and cheese is a set of steps that includes
boiling water, cooking the macaroni in the
water, and adding the cheese sauce

» Algorithms are usually written in a format that is
not specific to a particular programming
language

Unit 11: Programming 39

Algorithms

» Steps for designing an algorithm:

»Record the steps required to solve the
problem manually

» Specify how to manipulate the information
needed to calculate and solve the problem

» Specify how the computer decides what to
display as the solution

Unit 11: Programming il

8/26/2016

Algorithms

» The traditional approach to programming uses a
procedural paradigm (sometimes called an
imperative paradigm) to conceptualize the
solution to a problem as a sequence of steps

» A programming language that supports the
procedural paradigm is called a procedural
language; these languages are well suited to
problems that can easily be solved with a linear,
step-by-step algorithm

Unit 11: Programming 38

Algorithms

FIGURE 11-25: AN ALGORITHM IS A SERIES OF STEPS SIMILAR TO A RECIPE

Unit 11: Programming

Pseudocode and Flowcharts

> You can express an algorithm in several different
ways, including structured English, pseudocode,
and flowcharts

» Structured English is a subset of the English language
with a limited selection of sentence structures that reflect
processing activities

» Pseudocode is a notational system for algorithms that is
less formal than a programming language

» A flowchart is a graphical representation of the way a
computer should progress from one instruction to the next
as it performs a task

Unit 11: Programming 2

8/26/2016

Pseudocode and Flowcharts Flow Control

FIGURE 11-28: PSEUDOCODE FOR A PROGRAM TO COMPARE TWO PIZZAS

e e e > The key to a computer’s ability to adjust to
e e ot so many situations is the programmer’s
'“’Q‘L‘ earar 22 ability to control the flow of a program
E:::fgh:;;u:;;ﬁ:;sjave »Flow control refers to the sequence in
e which a computer executes program

! "h“”"i;:::c:'::; € 3.142 * (size2 / 2) "2 InStrUCtlonS

squarelnchPrice2 € price2 | squarelnches2 . .

H Aoy < s P2 e » Programmers assign a sequential

W sarrePrie? < syarec e then execution for computers to follow when

i squareincnPric = squaelncrPice? then performing program instructions

output "Both pizzas are the same deal*

Unit 11: Programming 43 Unit 11: Programming 44

Flow Control Flow Control

>Here is a simple program written in the » A sequence control structure changes the order in

. which instructions are carried out by directing the
Python programming language that computer to execute an instruction elsewhere in the

OUtpUtS This is the fist line. @Nd then program
OULPULS This is the next line.: » In the following simple program, a goto command tells
the computer to jump directly to the instruction labeled

print (“This is the first line.”) “Widget”:

. wmpie s . P
print (“This is the next line.”) print (“This is the first line.”)
goto Widget

print (“This is the next line.”)

Widget: print (“All done!”)

Unit 11: Programming 45 Unit 11: Programming 46

FIOW Contro| FIOW Control FIGURE 11-32: HOW A FUNCTION WORKS

» A function is a section of code that is part of
a program but is not included in the main
sequential execution path; a sequence
control structure directs the computer to the
statements contained in a function—when the
statements have been executed, the
computer returns to the main program

Unit 11: Programming 47 Unit 11: Programming 48

8/26/2016

Flow Control

FIGURE 11-33: A SELECTION CONTROL FLOWCHART
» A selection control w
structure tells a
computer what to
do based on
whether a condition l—®—’
is true or false; a
simple example of a
selection control
structure is the
if_else cOMmand

Unit 11: Programming

FIGURE 11-34: A REPETITION CONTROL FLOW CHART

?

Loop

Flow Control

» A repetition control
structure directs the
computer to repeat one
or more instructions
until a certain condition
is met

» The selection of code
that repeats is usually
referred to as a loop or
an iteration

Unit 11: Programming

Procedural Applications

» Procedural languages encourage programmers to
approach problems by breaking the solution down into a
series of steps; the earliest programming languages were
procedural

» The procedural approach is best used for problems that
can be solved by following a step-by-step algorithm

» Programs using the procedural approach tend to run
quickly and use system resources efficiently

» The procedural paradigm is quite flexible and powerful,
which allows programmers to apply it to many types of
problems

Unit 11: Programming

Section D: Object-Oriented Code

»Objects and Classes
»Inheritance

»Methods and Messages
»0O0 Program Structure
»00 Applications

Unit 11: Programming

Objects and Classes

» The object-oriented (OO) paradigm is based on
objects and classes that can be defined and
manipulated by program code

> Itis based on the idea that the solution for a
problem can be visualized in terms of objects that
interact with each other

» Rather than envisioning a list of steps,
programmers envision a program as data objects
that essentially network with each other to
exchange data

Unit 11: Programming

Objects and Classes

Step 1

OBJECT-ORIENTED PARADIGM PROCEDURAL PARADIGM

FIGURE 11-36: OBJECT-ORIENTED PARADIGM V5. PROCEDURAL PARADIGM

Unit 11: Programming

8/26/2016

Objects and Classes

> In the context of the OO paradigm, an
object is a unit of data that represents an
abstract or real-world entity, such as a
person, place, or thing

»Whereas an object is a single instance of
an entity, a class is a template for a
group of objects with similar
characteristics

Unit 11: Programming 55

Inheritance

»In OO jargon, inheritance refers to passing
certain characteristics from one class to other
classes

» The process of producing new classes with
inherited attributes creates a class hierarchy
that includes superclass and subclasses

»A superclass is any class from which attributes
can be inherited

»A subclass (or derived class) is any class that
inherits attributes from a superclass

Unit 11: Programming 57

Objects and Classes

> A class attribute defines the characteristics
of a set of objects

» Each class attribute generally has a name,
scope, and data type; its scope can be
defined as public or private

»A public attribute is available for use by any
routine in the program

> A private attribute can be accessed only from
the routine in which it is defined

Unit 11: Programming 56

Methods and Messages

» In an OO program, the objects interact;
programmers specify how they interact by creating
methods

» A method is a segment of code that defines an
action; the names of methods end in a set of
parenthesis, such as compare() or getArea()

» The code that is contained in a method may be a
series of steps similar to code segments in
procedural programs

Unit 11: Programming 58

Methods and Messages

FIGURE 11-42: JAVA CODE FOR THE COMPARE() METHOD

The method manipulates
pizza objects,

if (Pizzal.squareInchPrice < Pizza2.squareInchPrice)

public compare(Pizza Pizzal, Pizza Pizza2)
{
The methed title

includes its scope
and name.

System.out.println("Pizza 1 is the best deal!");

if (Pizzal.squarelnchPrice > Pizza2.squareInchPrice)
oy ot e | system.out.printin("pizza 2 is the best deall");
:orl_emdelelmine
::T:::;ﬁu s the if (Pizzal.squareInchPrice == Pizza2.squareInchPrice

System.out.println("The pizzas are the same deal!");

}

Unit 11: Programming 59

Methods and Messages

» A method is activated by a message, which is
included as a line of program code that is
sometimes referred to as a call

> In the OO world, objects often interact to solve a
problem by sending and receiving messages

» Polymorphism, sometimes called overloading, is
the ability to redefine a method in a subclass; it
provides OO programmers with easy extensibility
and can help simplify program control structures

Unit 11: Programming 60

10

8/26/2016

Methods and Messages OO Program Structure

FIGURE 11-43:A METHOD MAY ASK AN OBIECT FOR DATA > For classes and methods to fit together they must

be placed within the structure of a Java program,
which contains class definitions, defines methods,
initiates the comparison, and outputs results

» The computer begins executing a Java program by
locating a standard method called main(), which
contains code to send messages to objects by
calling methods

Hey! What is your
square-inch price?

Compare() Method Pizzal Object

Unit 11: Programming 61 Unit 11: Programming

OO Applications Section E: Declarative Programming

»In 1983, OO features were added to the C
programming language, and C++ emerged as a

»The Declarative Paradigm

popular tool for programming games and
applications »Prolog Facts
» Java was originally planned as a programming > Prolog Rules
language for consumer electronics, but it evolved
into an OO programming platform for developing > |Interactive |nput
Web applications . .
> Most of today’s popular programming languages, »Declarative LOgIC

such as Java, C++, Swift, Python, and C#, include
OO features

»Declarative Applications

Unit 11: Programming 63 Unit 11: Programming 64

The Declarative Paradigm The Declarative Paradigm
> The declarative paradigm describes FIGURE 11-51: PROGRAMMING PARADIGMS TAKE DIFFERENT APPROACHES
aspects of a problem that lead to a
solution Procedural Object-oriented Declarative
paradigm: paradigm: paradigm:
> Programmers using declarative Programs detail how Programs define Programs describe
Ianguages write code that declares. or to solve a problem objects, classes, and the problem
1
- Very efficient for methods Efficient for
states, facts pertalnlng toa program number-crunching Efficient for problems processing words
tasks that involve real- and language

world objects

Unit 11: Programming 65 Unit 11: Programming

11

The Declarative Paradigm

» The programming language Prolog uses a
collection of facts and rules to describe a
problem

»In the context of a Prolog program, a fact is a
statement that provides the computer with
basic information for solving a problem; a
rule is a general statement about the
relationship between facts

Unit 11: Programming 67

8/26/2016

Prolog Facts

» Prolog programming is easy to use; the
punctuation mainly consists of periods,
commas, and parentheses, so programmers
don’t have to track levels and levels of curly
brackets

» The words in the parentheses are called
arguments, which represent one of the
main subjects that a fact describes

Unit 11: Programming]

Prolog Facts

A fact begins with Arguments are placed Each fact ends
alowercase letter. in parentheses. with a period

i~ == I

shapeof(pizza,found).
4

Use a comma to sepa-
rate arguments.

FIGURE 11-52: PROLOG SYNTAX

Use lowercasa for
arguments unless
they are variables.

Unit 11: Programming

Prolog Facts

» Each fact in a Prolog program is similar to a record
in a database, but you can query a Prolog
program’s database by asking a question, called a
goal

» As an example, the following facts can easily be
queried by entering goals: pricecs (pizzai,i0).
sizeof (pizzal,12) .
shapeof (pizzal,square) .
priceof (pizza2,12) .
sizeof (pizza2,14).

shapeof (pizza2,round) .

Unit 11: Programming bl

Prolog Facts

» The word outside the parentheses is called
a predicate and describes the relationship
between the arguments

FIGURE 11-53: PREDICATES ARE IMPORTANT

o -'b'P,t ———

) ' P o ""’i €

< » -

) s

y 20

a 800

hates(joe,fish). playscardgame (joe,6 fish). name (joe, fish) .
Joe hates fish Joe plays a card game called fish, Joe is the name of a fish.

Unit 11: Programming 70

Prolog Rules

»With just facts and goals, Prolog would be
nothing more than a database

» The addition of rules gives programmers a
set of tools to manipulate the facts

» Unlike other programming languages, the
order or sequence of rules in a Prolog
program is usually not critical to making sure
the program works

Unit 11: Programming 72

12

Prolog Rules

FIGURE 11-57 ANATOMY OF A PROLOG RULE
The head of a rule defines an outcome
or fact. In this case, the rule is true if

The connecting symbol
PizzaX is a better deal than PizzaY. - means "if.”

: .

betterdeal (PizzaX, Pizza¥) :-

This clause means “The

is an amount designated

square-inch price of PizzaX

Sfthe e squareinchprice (Pizza¥,AmountY) , <@ This dause means "The

of three
clauses.

a5 AmountX.”
The body {squatexnchprxce (PizzaX, AmountX) , <=

AmountX < Amount¥ is an amount designated

as AmountY.”

square-inch price of PizzaY

The final clause

means "AmountX is
less than AmountY.”

Unit 11: Programming 73

Interactive Input

FIGURE 11-60: PROLOG INPUT

Prolog uses the write
predicate t
prompt for write (user,'enter price of pizzal: '),

Theresd predieee | read(user,Pricel), assertz(priceof (pizzal,Pricel)),
gathers input entered
by the user, and then
the assertz predicate
ereates a fact, such as
pricecf(pizzal,12).

write (user, 'enter size of pizzal: '),
read(user,Sizel) , assertz(sizeof(pizzal,Sizel)),

write (user, 'enter shape of pizzal: '),

read(user,Shapel) , assertz(shapeof (pizzal,Shapel)),
write (user,'enter price of pizza2: ')
read(user,Price2), assertz(pricecf (pizza2, Price2)),
write (user,'enter size of pizza2: '),
read(user,Size2) , assertz(sizeof (pizza2, Size2)),
write (user,'enter shape of pizza2: '),

read (user,Shape2), assertz(shapeof (pizza2,Shape2))

Unit 11: Programming

8/26/2016

Interactive Input

> In order for programmers to collect input from
the user, they can use read and write
statements

» Read and write predicates collect user input

» Prolog uses the write predicate to display a
prompt for input

> The read predicate gathers input entered by
the user, and then creates a fact

Unit 11: Programming 74

Declarative Logic

» Programmers need to determine how many
conditions will apply to a program before
starting to code facts and rules

» A decision table is a tabular method for
visualizing and specifying rules based on
multiple factors

» The decision table lays out the logic for the
factors and actions and allows the
programmer to see the possible outcomes

Unit 11: Programming 76

Declarative Logic

FIGURE 11-61: A DECISION TABLE LAYS OUT THE LOGIC FOR FACTORS AND ACTIONS

(1) (2]

Lowest price? Y N ¥ NCOY N Y N
Delivery available? Y Y N N Y Y N N
Ready in less than 30 minutes? ¥ ¥ ¥ Y N N N N
@ Each factor that relates to the pizza purchase is listed in the first column of the upper
part of the table.
@ The remaining cells

of factors. This tabls

t are taken based on the factors. The pro
Ic nn of Ys and N ecide if the action should be taken. For
example, in the column filled with Ys, the action would be to buy the pizza

Unit 11: Programming

Declarative Applications

» As a general rule, declarative programming languages are
most suitable for problems that pertain to words and
concepts rather than to numbers

» Declarative languages offer a highly effective programming
environment for problems that involve words, concepts, and
complex logic

» One of the disadvantages of declarative languages is that
they are not commonly used for production applications—
today’s emphasis on the OO paradigm has pushed
declarative languages out of the mainstream, both in
education and in the job market

Unit 11: Programming 8

13

8/26/2016

rrrrrrrrrrrrrrr

Unit 11 Complete

Computer Concepts 2016

14

