
8/26/2016

1

Computer Concepts 2016

Unit 11
Programming

ENHANCED EDITION

11 Unit Contents

Section A: Program Development

Section B: Programming Tools

Section C: Procedural Programming

Section D: Object-Oriented Code

Section E: Declarative Programming

Unit 11: Programming 2

11 Section A: Program Development

Programming Basics

Program Planning

Program Coding

Program Testing and Documentation

Unit 11: Programming 3

11 Programming Basics

 Computer programming encompasses a broad set of

activities that include planning, coding, testing, and

documenting

 A related activity, software engineering, is a development

process that uses mathematical, engineering, and

management techniques to reduce the cost and complexity

of a computer program while increasing its reliability and

modifiability

 The instructions that make up a computer program are

referred to as code because program instructions for first-

generation computers were entered in binary codes

Unit 11: Programming 4

11 Programming Basics

Unit 11: Programming 5

11 Programming Basics

Programmers typically specialize in either

application programming or system

development

Application programmers create

productivity applications such as Microsoft

Office

Systems programmers specialize in

developing system software such as

operating systems, device drivers, security

modules, and communications software
Unit 11: Programming 6

8/26/2016

2

11 Program Planning

In the context of programming, a problem

statement defines certain elements that must

be manipulated to achieve a result or goal

A good problem statement for a computer

program has three characteristics:

It specifies any assumptions that define the

scope of the problem

It clearly specifies the known information

It specifies when the problem has been solved

Unit 11: Programming 7

11 Program Planning

In a problem statement, an assumption is

something you accept as true in order to

proceed with program planning

The know information in a problem

statement is the information that is supplied

to the computer to help it solve a problem

After identifying the known information, a

programmer must specify how to determine

when the problem has been solved

Unit 11: Programming 8

11 Program Planning

Several software development methodologies exist

to help program designers and coders plan,

execute, and test software

Methodologies can be classified as predictive or

agile

A predictive methodology requires extensive planning

and documentation up front; it’s used to construct

buildings and assemble cars—tasks that are well defined

and predictable

An agile methodology focuses on flexible development

and specifications that evolve as the project progresses

Unit 11: Programming 9

11 Program Coding

The core of a computer program is a

sequence of instructions

A keyword, or command, is a word with a

predefined meaning

Keywords differ depending on the

programming language; there is a basic

vocabulary that covers most necessary

tasks

Unit 11: Programming 10

11 Program Coding

Unit 11: Programming 11

Cont…

11 Program Coding

Unit 11: Programming 12

8/26/2016

3

11 Program Coding

Keywords can be combined with specific

parameters, which provide more detailed

instructions for the computer to carry out

These parameters include variables and

constants

A variable represents a value that can change

A constant is a factor that remains the same

throughout a program

Unit 11: Programming 13

11 Program Coding

The set of rules that specify the sequence of

keywords, parameters, and punctuation in a

program instruction is referred to as syntax

Unit 11: Programming 14

11 Program Coding

You may be able to use a text editor, program

editor, or graphical user interface to code

computer programs

A text editor is any word processor that can be

used for basic text editing tasks, such as writing

email, creating documents, and coding computer

programs

A program editor is a type of text editor specially

designed for entering code for computer

programs

Unit 11: Programming 15

11 Program Testing and Documentation

Programs that don’t work correctly might crash,

run forever, or provide inaccurate results; when a

program isn’t working, it’s usually the result of a

runtime, logic, or syntax error

A runtime error occurs when a program runs

instructions that the computer can’t execute

A logic error is a type of runtime error in the

logic or design of the program

A syntax error occurs when an instruction

does not follow the syntax rules of the

programming language

Unit 11: Programming 16

11 Program Testing and Documentation

Unit 11: Programming 17

11 Program Testing and Documentation

Programs need to meet performance,

usability, and security standards

Performance – programmers need to carry out

real-world tests to ensure that programs don’t

take too long to load

Usability – programs should be easy to learn

and use and be efficient

Security – program specifications are formulated

to so programmers remain aware of security

throughout the software development life cycle

Unit 11: Programming 18

8/26/2016

4

11 Program Testing and Documentation

 Techniques associated with defensive programming include:

Unit 11: Programming 19

11 Section B: Programming Tools

Language Evolution

Compilers and Interpreters

Paradigms and Languages

Toolsets

Unit 11: Programming 20

11 Language Evolution

When applied to programming languages,

abstraction inserts a buffer between

programmers and the chip-level details of

instruction sets and binary data

representation

For programming languages, abstraction

automates hardware-level details, such as

how to move data from memory to the

processor

Unit 11: Programming 21

11 Language Evolution

A low-level language has a low level of

abstraction because it includes commands

specific to a particular CPU or

microprocessor family

A high-level language uses command

words and grammar based on human

languages to provide a level of abstraction

that hides the underlying low-level language

Unit 11: Programming 22

11 Language Evolution

Unit 11: Programming 23

11 Language Evolution

First-generation languages are the fist

machine languages programmers used

Second-generation languages added a level

of abstraction to machine languages by

substituting abbreviated command words for

binary numbers

Third-generation languages were conceived

in the 1950s and used easy-to-remember

command words, such as PRINT and INPUT

Unit 11: Programming 24

8/26/2016

5

11 Language Evolution

An assembly language is classified as a low-

level language because it is machine specific

An assembler typically reads a program written in

an assembly language, which has two parts: the

op code and the operand

An op code, which is short for operation code,

is a command word for an operation such as

add, compare, or jump

The operand for an instruction specifies the

data for the operation

Unit 11: Programming 25

11 Language Evolution

Look at the parts of an assembly language

shown in figure 11-15—consider how tedious

it would be to write a program consisting of

thousands of these concise, but cryptic, op

codes:

Unit 11: Programming 26

11 Language Evolution

Fourth-generation languages are

considered “high-level” languages, and more

closely resemble human languages

The computer language Prolog, based on a

declarative programming paradigm, is

identified as a fifth-generation language—

though some experts disagree with this

classification

Unit 11: Programming 27

11 Language Evolution

Unit 11: Programming 28

11 Compilers and Interpreters

The human-readable version of a program

created in a high-level language by a programmer

is called source code

Source code must first be translated into machine

language using a compiler or interpreter

A compiler converts all the statements in a program in

a single batch, and the resulting collection of

instructions, called object code, is placed in a new file

An interpreter converts and executes one statement at

a time while the program is running; once executed, the

interpreter converts and executes the next statement

Unit 11: Programming 29

11 Compilers and Interpreters

Unit 11: Programming 30

8/26/2016

6

11 Compilers and Interpreters

Unit 11: Programming 31

11 Paradigms and Languages

The phrase programming paradigm refers

to a way of conceptualizing and structuring

the tasks a computer performs

A programmer uses a programming language

that supports the paradigm

Other programming languages—referred to

as mulitparadigm languages—support

more than one paradigm

Unit 11: Programming 32

11 Paradigms and Languages

Unit 11: Programming 33

11 Paradigms and Languages

 Programmers generally find it useful to classify

languages based on the types of projects for which they

are used

 Some languages are used for Web programming; others

for mobile apps, games, and enterprise applications

 Some of the most commonly used programming

languages include:

Fortran

LISP

COBOL

BASIC

C

Unit 11: Programming 34

Prolog

Ada

C++

Objective-C

Python

Visual Basic (VB)

Ruby

Java

JavaScript

PHP

C#

Swift

Perl

11 Toolsets

 Serious programmers typically download and install

programming tools; their toolbox may include a compiler, a

debugger, and an editor

 Programmers often download an SDK or IDE that contains a

collection of programming tools

An SDK (software development kit) is a collection of

language-specific programming tools that enables a

programmer to develop applications for a specific

computer platform

An IDE (integrated development environment) is a type of

SDK that packages a set of development tools into a

sleek programming application

Unit 11: Programming 35

11 Toolsets

Unit 11: Programming 36

8/26/2016

7

11 Section C: Procedural Programming

Algorithms

Pseudocode and Flowcharts

Flow Control

Procedural Applications

Unit 11: Programming 37

11 Algorithms

The traditional approach to programming uses a

procedural paradigm (sometimes called an

imperative paradigm) to conceptualize the

solution to a problem as a sequence of steps

A programming language that supports the

procedural paradigm is called a procedural

language; these languages are well suited to

problems that can easily be solved with a linear,

step-by-step algorithm

Unit 11: Programming 38

11 Algorithms

An algorithm is a set of steps for carrying out a

task that can be written down and implemented

For example, the algorithm for making macaroni

and cheese is a set of steps that includes

boiling water, cooking the macaroni in the

water, and adding the cheese sauce

Algorithms are usually written in a format that is

not specific to a particular programming

language

Unit 11: Programming 39

11 Algorithms

Unit 11: Programming 40

11 Algorithms

Steps for designing an algorithm:

Record the steps required to solve the

problem manually

Specify how to manipulate the information

needed to calculate and solve the problem

Specify how the computer decides what to

display as the solution

Unit 11: Programming 41

11 Pseudocode and Flowcharts

You can express an algorithm in several different

ways, including structured English, pseudocode,

and flowcharts

Structured English is a subset of the English language

with a limited selection of sentence structures that reflect

processing activities

Pseudocode is a notational system for algorithms that is

less formal than a programming language

A flowchart is a graphical representation of the way a

computer should progress from one instruction to the next

as it performs a task

Unit 11: Programming 42

8/26/2016

8

11 Pseudocode and Flowcharts

Unit 11: Programming 43

11 Flow Control

The key to a computer’s ability to adjust to

so many situations is the programmer’s

ability to control the flow of a program

Flow control refers to the sequence in

which a computer executes program

instructions

Programmers assign a sequential

execution for computers to follow when

performing program instructions

Unit 11: Programming 44

11 Flow Control

Here is a simple program written in the

Python programming language that

outputs This is the fist line. and then

outputs This is the next line.:

print (“This is the first line.”)

print (“This is the next line.”)

Unit 11: Programming 45

11 Flow Control

 A sequence control structure changes the order in

which instructions are carried out by directing the

computer to execute an instruction elsewhere in the

program

 In the following simple program, a goto command tells

the computer to jump directly to the instruction labeled

“Widget”:

print (“This is the first line.”)

goto Widget

print (“This is the next line.”)

Widget: print (“All done!”)

Unit 11: Programming 46

11 Flow Control

A function is a section of code that is part of

a program but is not included in the main

sequential execution path; a sequence

control structure directs the computer to the

statements contained in a function—when the

statements have been executed, the

computer returns to the main program

Unit 11: Programming 47

11 Flow Control

Unit 11: Programming 48

8/26/2016

9

11 Flow Control

A selection control

structure tells a

computer what to

do based on

whether a condition

is true or false; a

simple example of a

selection control

structure is the

if…else command

Unit 11: Programming 49

11 Flow Control

A repetition control

structure directs the

computer to repeat one

or more instructions

until a certain condition

is met

The selection of code

that repeats is usually

referred to as a loop or

an iteration

Unit 11: Programming 50

11 Procedural Applications

 Procedural languages encourage programmers to

approach problems by breaking the solution down into a

series of steps; the earliest programming languages were

procedural

 The procedural approach is best used for problems that

can be solved by following a step-by-step algorithm

 Programs using the procedural approach tend to run

quickly and use system resources efficiently

 The procedural paradigm is quite flexible and powerful,

which allows programmers to apply it to many types of

problems

Unit 11: Programming 51

11 Section D: Object-Oriented Code

Objects and Classes

Inheritance

Methods and Messages

OO Program Structure

OO Applications

Unit 11: Programming 52

11 Objects and Classes

The object-oriented (OO) paradigm is based on

objects and classes that can be defined and

manipulated by program code

 It is based on the idea that the solution for a

problem can be visualized in terms of objects that

interact with each other

Rather than envisioning a list of steps,

programmers envision a program as data objects

that essentially network with each other to

exchange data

Unit 11: Programming 53

11 Objects and Classes

Unit 11: Programming 54

8/26/2016

10

11 Objects and Classes

In the context of the OO paradigm, an

object is a unit of data that represents an

abstract or real-world entity, such as a

person, place, or thing

Whereas an object is a single instance of

an entity, a class is a template for a

group of objects with similar

characteristics

Unit 11: Programming 55

11 Objects and Classes

A class attribute defines the characteristics

of a set of objects

Each class attribute generally has a name,

scope, and data type; its scope can be

defined as public or private

A public attribute is available for use by any

routine in the program

A private attribute can be accessed only from

the routine in which it is defined

Unit 11: Programming 56

11 Inheritance

In OO jargon, inheritance refers to passing

certain characteristics from one class to other

classes

The process of producing new classes with

inherited attributes creates a class hierarchy

that includes superclass and subclasses

A superclass is any class from which attributes

can be inherited

A subclass (or derived class) is any class that

inherits attributes from a superclass
Unit 11: Programming 57

11 Methods and Messages

 In an OO program, the objects interact;

programmers specify how they interact by creating

methods

A method is a segment of code that defines an

action; the names of methods end in a set of

parenthesis, such as compare() or getArea()

The code that is contained in a method may be a

series of steps similar to code segments in

procedural programs

Unit 11: Programming 58

11 Methods and Messages

Unit 11: Programming 59

11 Methods and Messages

A method is activated by a message, which is

included as a line of program code that is

sometimes referred to as a call

 In the OO world, objects often interact to solve a

problem by sending and receiving messages

Polymorphism, sometimes called overloading, is

the ability to redefine a method in a subclass; it

provides OO programmers with easy extensibility

and can help simplify program control structures

Unit 11: Programming 60

8/26/2016

11

11 Methods and Messages

Unit 11: Programming 61

11 OO Program Structure

For classes and methods to fit together they must

be placed within the structure of a Java program,

which contains class definitions, defines methods,

initiates the comparison, and outputs results

The computer begins executing a Java program by

locating a standard method called main(), which

contains code to send messages to objects by

calling methods

Unit 11: Programming 62

11 OO Applications

 In 1983, OO features were added to the C

programming language, and C++ emerged as a

popular tool for programming games and

applications

 Java was originally planned as a programming

language for consumer electronics, but it evolved

into an OO programming platform for developing

Web applications

Most of today’s popular programming languages,

such as Java, C++, Swift, Python, and C#, include

OO features
Unit 11: Programming 63

11 Section E: Declarative Programming

The Declarative Paradigm

Prolog Facts

Prolog Rules

Interactive Input

Declarative Logic

Declarative Applications
Unit 11: Programming 64

11 The Declarative Paradigm

The declarative paradigm describes

aspects of a problem that lead to a

solution

Programmers using declarative

languages write code that declares, or

states, facts pertaining to a program

Unit 11: Programming 65

11 The Declarative Paradigm

Unit 11: Programming 66

8/26/2016

12

11 The Declarative Paradigm

Unit 11: Programming 67

The programming language Prolog uses a

collection of facts and rules to describe a

problem

In the context of a Prolog program, a fact is a

statement that provides the computer with

basic information for solving a problem; a

rule is a general statement about the

relationship between facts

11 Prolog Facts

Unit 11: Programming 68

Prolog programming is easy to use; the

punctuation mainly consists of periods,

commas, and parentheses, so programmers

don’t have to track levels and levels of curly

brackets

The words in the parentheses are called

arguments, which represent one of the

main subjects that a fact describes

11 Prolog Facts

Unit 11: Programming 69

11 Prolog Facts
The word outside the parentheses is called

a predicate and describes the relationship

between the arguments

Unit 11: Programming 70

11 Prolog Facts

Each fact in a Prolog program is similar to a record

in a database, but you can query a Prolog

program’s database by asking a question, called a

goal

As an example, the following facts can easily be

queried by entering goals:

Unit 11: Programming 71

11 Prolog Rules

With just facts and goals, Prolog would be

nothing more than a database

The addition of rules gives programmers a

set of tools to manipulate the facts

Unlike other programming languages, the

order or sequence of rules in a Prolog

program is usually not critical to making sure

the program works

Unit 11: Programming 72

8/26/2016

13

11 Prolog Rules

Unit 11: Programming 73

11 Interactive Input

In order for programmers to collect input from

the user, they can use read and write

statements

Read and write predicates collect user input

Prolog uses the write predicate to display a

prompt for input

The read predicate gathers input entered by

the user, and then creates a fact

Unit 11: Programming 74

11 Interactive Input

Unit 11: Programming 75

11 Declarative Logic

Programmers need to determine how many

conditions will apply to a program before

starting to code facts and rules

A decision table is a tabular method for

visualizing and specifying rules based on

multiple factors

The decision table lays out the logic for the

factors and actions and allows the

programmer to see the possible outcomes

Unit 11: Programming 76

11 Declarative Logic

Unit 11: Programming 77

11 Declarative Applications

 As a general rule, declarative programming languages are

most suitable for problems that pertain to words and

concepts rather than to numbers

 Declarative languages offer a highly effective programming

environment for problems that involve words, concepts, and

complex logic

 One of the disadvantages of declarative languages is that

they are not commonly used for production applications—

today’s emphasis on the OO paradigm has pushed

declarative languages out of the mainstream, both in

education and in the job market

Unit 11: Programming 78

8/26/2016

14

Computer Concepts 2016

Unit 11 Complete

