
5/8/2012

1

Specifying Instructions to the Shell

Chapter 8

 An overview of shell.

 Execution of commands in a shell.

 Shell command-line expansion.

 Customizing the functioning of the shell.

 Employing advanced user features.

 A shell interprets and executes the syntax of
the command-lines in a specific way.

 The kernel is the core program of UNIX/Linux,
which schedules processes, allocates memory,
and handles input/output and other
peripherals.

 User cannot directly communicate with the
kernel.

 The shell interacts with the kernel to execute a
request.

 The shell is the middleman between the user
and the kernel.

 A shell translates a user’s requests into kernel
calls.

 The login shell is started when a user logs in
and exits when the user logs out.

 A shell is the interface between the user,
utilities, the file system, and the kernel.

 The shell’s primary function is to read the
command-line, examine its component, and
interpret it according to its rules.

 The shell performs the given task and returns
the prompt for further requests.

 Entering a command from the keyboard is the basic way of

communicating with the shell.

 For each utility requested by the user, the shell starts a new child

process to execute the code of that utility.

 The child process inherits the environment variables like pid, user,

etc.

 The “ps” utility can be used for obtaining the process

identification numbers.

5/8/2012

2

 The shell proceeds through a series of specific steps after a user

issues commands.

 The complete command-line is first interpreted by the shell.

 The shell interprets the ENTER key as the completion of a

command.

 The shell interprets “\” as an instruction not to interpret the

special meaning of the single character that immediately follows

it.

 The commands entered at the shell prompt
usually include several words or tokens.

 The shell interprets some tokens as utilities and
others as filenames.

 The command line interprets the “>”, “|”, and
“<“ as special characters that control the input
and output of a file.

 The shell uses white space to identify the
words or tokens of a command-line.

 The “$” sign is recognized by the shell as the
start of a new variable.

 The shell interprets the first word in the command-line of the shell

as a utility.

 The shell interprets the token following the pipe as a utility and

the token following the redirection operator as a file.

 The “semicolon” can be used to indicate the end of one pipeline.

 A shell can run one pipeline after another on a single command-

line by separating them with semicolons.

 The first token after the semicolon begins a new pipeline, and

hence must be a utility.

 The logical AND (&&) operator can instruct the pipeline to run the next
utility based on the success or failure of the preceding pipeline.

 The command-line is successful only if both are executed.

 A token following the && operator is interpreted as a utility.

 The logical OR (||) operator executes only one of the two utilities in the
command-line.

 The shell can easily interpret a variable in all tokens since a $ sign

precedes them.

 The “–x” option tells the shell to explain how it interprets the command-

line before executing it.

 The shell is an active process and runs in the
foreground.

 The resources allocated to a running process are
called process space or process image.

 The shell makes an exact copy of the process space,
including environment variables, when running a
utility.

 A new child process space is an exact copy of the
shell.

 The child process inherits the input, output, error
destination, and variable information from the
parent.

5/8/2012

3

 The input, the output and the error files all are
connected to the default output, the monitor.

 An error message is displayed on the screen if a
command is not able to execute.

 An error message can be redirected to a file by
using the “2>” and a filename to the command-
line.

Ex: ls –l practice xxxxA > lsoutput 2> lserror

 The bash, ksh, and sh uses “>” or “1>” to
redirect output to a file.

 The standard error and output can both be
redirected to the same file using the “>&” and
specifying the filename in the command line.

Ex: ls –l practice xxxxA > outerr 2>&1

 The shell interprets the variable “?” as the exit
code of the last process.

 Exit codes other than zero are error codes.

 Every time a process completes its execution
and exits, it informs its parent about the status
of the exit code.

 Some characters are interpreted by the shell as wildcard

characters, while others can be used for specifying a range

of characters.

 The filename expansion of the filename-matching feature

allows the selection of many filenames while entering only

one name with special characters embedded.

 The * and ? are interpreted by the shell as special characters.

 The asterisk (*) character can be used for matching
any number of characters, while the question mark
(?) is used only for matching a single character.

 The shell also allows a range of letters or characters
to be specified with the help of square brackets.

 The curly brace characters, “{“ and “}”, are also
used by the bash shell and modern ksh shells for
matching and creating multiple filenames from
one pattern.

 The curly braces match existing filenames if each
match is specified in the braces, but does not
expand ranges.

 Local and environmental are the two different
kinds of variables identified by the shell.

 The “set” or “env” command lists the variables
that are set in the shell’s memory.

 In a csh or tcsh shell, the set command is used
for declaring a variable and assigning a value
to it.

5/8/2012

4

 In ksh, bash, or sh shell, a variable is directly
defined and assigned a value without the set
command.

 The shell interprets the $ character as an
instruction to locate in the shell’s memory a
variable that has the name of the character
string that follows the $.

 The variable must be enclosed in single quotes
if it includes any spaces.

 The “unset” command can be used for
removing a local variable.

 An environmental variable can be removed
with the help of the “unsetenv” command.

 The “export” command is used for making a
local variable available to a child process.

 An environmental variable modified by the child process is

not reflected in the parent’s environmental variables.

 The shell also allows a variable to be created and exported at

the same time. Ex: export newvar=enoughalready

 The variables set in a child process are lost once the child

process exits.

 The “path” or “PATH” variable is searched when a user requests

for a utility.

 The path is a local variable and is usually assigned a value in the

startup script.

 To add a new directory to the path in the Korn shell use the : and

append to the end of the existing PATH.

Ex: PATH=$PATH:~/new_directory

Ex: PATH=$PATH:.

Completing filenames:

 The variable filec in a tcsh shell, when set in the environment,

instructs the shell to search for matching filenames.

 When a shell cannot distinguish between two existing files, it

either displays all matching files or simply flashes or produces

beeps.

 Filename completion can also be used for files, directories, and

executables.

5/8/2012

5

Completing filenames (continued):

 The filename-completion variable can be set in the Korn shell

by executing either the “set –o vi” or the “set –o vi-

tabcomplete” command.

 The “set –o vi” or “set +o posix” commands can be used for

turning on the file-completion feature if it is not working.

 Many C shells include filename completion, but use the ESC

key to trigger completion of filenames.

Evaluating shell variables:

 The bash and ksh shells also provide built-in variables that are

useful in interacting with the shell.

 The SECOND shell variable can be used for determining the

number of seconds since the shell was started.

 In a bash shell, the PROMPT_COMMAND variable allows a user

to execute any command just before it displays the prompt.

 A dot file is a run-control file for a specific utility or shell.

Customizing shell startup files:

 The csh shell can be customized with the help of the
.cshrc file in the /etc directory since it is always read
at startup.

 The bash shell reads the file .bashrc whenever it
starts.

 A system setup to start a ksh file reads the .kshrc file
at startup.

Customizing shell startup files (continued):

 A system setup to start a ksh file reads the .kshrc file
at startup.

 The .kshrc file is not read if the ENV environmental
variable is not set.

 The ksh shell is programmed to read at startup
whatever file is the value of the ENV variable.

 A variety of command line options exist for
interacting with shells.

 A child process started by the shell for each
utility execution inherits the input, output, and
error destinations, as well as environmental
variables.

 Environment and user defined shell variables
provide user flexibility for interacting within
the unix environment.

