Introduction to

UNIX and
Linux

CST 126 - LESSON 9

Specifying Instructions to the Shell
Chapter 8

An Overview of Shell

= A shellinterprets and executes the syntax of
the command-lines in a specific way.

= The kernel is the core program of UNIX/Linux,
which schedules processes, allocates memory,
and handles input/output and other
peripherals.
User cannot directly communicate with the
kernel.

An Overview of Shell

‘A shell is the interface between the user,
utilities, the file system, and the kernel.

The shell’s primary function is to read the
command-line, examine its component, and
interpret it according to its rules.

The shell performs the given task and returns
the prompt for further requests.

5/8/2012

Overview

An overview of shell.

Execution of commands in a shell.

Shell command-line expansion.
Customizing the functioning of the shell.
Employing advanced user features.

An Overview of Shell

The shell interacts with the kernel to execute a
request.

The shell is the middleman between the user
and the kernel.

A shell translates a user’s requests into kernel
calls.

The login shell is started when a user logs in
and exits when the user logs out.

Interacting with the Shell

Entering a command from the keyboard is the basic way of
communicating with the shell.

For each utility requested by the user, the shell starts a new child
process to execute the code of that utility.

The child process inherits the environment variables like pid, user,
etc.

The “ps” utility can be used for obtaining the process

identification numbers.

BOmMmunicating with the Shell

The shell proceeds through a series of specific steps after a user

issues commands.

The complete command-line i interpreted by the shell.

The shell interprets the ENTER key as the completion of a

command.

The shell interprets “\” as an instruction not to interpret the
special meaning of the single character that immediately follows

it.

identifying Utilities for Outpt
Redirection

‘The shell'interprets the first word in the command-line of the shell
as a utility.

The shell interprets the token following the pipe as a utility and
the token following the redirection operator as a file.

The “semicolon” can be used to indicate the end of one pipeline.
A'shell can run one pipeline after another on a single command-
line by separating them with semicolons.

The first token after the semicolon begins a new pipeline, and

hence must be a utility.

Starting Processes to Run
Utilities

The shell'is an active process and runs in the
foreground.
The resources allocated to a running process are
called process space or process image.
The shell makes an exact copy of the process space,
including environment variables, when running a
utility.
Anew child process space is an exact copy of the
shell.
The child process inherits the input, output, error
destination, and variable information from the
parent.

BOMmMmunicating with the Shell

o]

The commands entered at the shell prompt
usually include several words or tokens.

The shell interprets some tokens as utilities and
others as filenames.

The command line interprets the “>”, , an
< as special characters that control the input
and output of a file.

uln

The shell uses white space to identify the
words or tokens of a command-line.

The “$” sign is recognized by the shell as the
start of a new variable.

identifying Utilities in Pipelines

The logical AND (&&) operator can instruct the pipeline to run the next
utility based on the success or failure of the preceding pipeline.

The command-line is successful only if both are executed.
A token following the &é& operator is interpreted as a utility.

"The logical OR (| |) operator executes only one of the two utilities in the
command-line.

The shell can easily interpret a variable in all tokens since a $ sign
precedes them.

The “ option tells the shell to explain how it interprets the command-
line before executing it.

Starting Processes to
Utilities

5/8/2012

Redirecting Input and Output

= The input, the output and the error files all are
connected to the default output, the monitor.

& An error message is displayed on the screen if a
command is not able to execute.

= An error message can be redirected to a file by
using the “2>” and a filename to the command-
line.

Ex: Is -1 practice xxxxA > Isoutput 2> Iserror

ihe Exit Code Status After a
Utility Execution

= The shell interprets the variable “?” as the exit
code of the last process.

= Exit codes other than zero are error codes.

= Every time a process completes its execution
and exits, it informs its parent about the status
of the exit code.

USing Shell Characters to Expand
Filenames

The asterisk (*) character can be used for matching
any number of characters, while the question mark
(?) is used only for matching a single character.
The shell also allows a range of letters or characters
to be specified with the help of square brackets.
The curly brace characters, “{“ and “}”, are also
used by the bash shell and modern ksh shells for
matching and creating multiple filenames from
one pattern.

The curly braces match existing filenames if each
match is specified in the braces, but does not
expand ranges.

5/8/2012

Redirecting Input and Output

The bash, ksh, and sh uses “>" or “1>” to
redirect output to a file.

The standard error and output can both be
redirected to the same file using the “>&” and
specifying the filename in the command line.

BX: s -1 practice xxxxA > outerr 2>&1

USing Shell Characters to Expand

Filenames

Some characters are interpreted by the shell as wildcard
characters, while others can be used for specifying a range
of characters.

The filename expansion of the filename-matching feature
allows the selection of many filenames while entering only

one name with special characters embedded.

The * and ? are interpreted by the shell as special characters.

Creating and Using Local
Variables

Local and environmental are the two different
kinds of variables identified by the shell.

The “set” or “env” command lists the variables
that are set in the shell’s memory.

In a csh or tcsh shell, the set command is used

for declaring a variable and assigning a value
toit.

Creating and Using Local
Variables

= In ksh, bash, or sh shell, a variable is directly
defined and assigned a value without the set
command.
The shell interprets the $ character as an
instruction to locate in the shell’s memory a
variable that has the name of the character
string that follows the $.

The variable must be enclosed in single quotes

if it includes any spaces.

Passing Environment Variables
to Child Processes

‘An environmental variable modified by the child proce

not reflected in the parent’s environmental variables.

The shell also allows a variable to be created and exported at

the'same time. Ex: export newvar=enoughalready

The variables set in a child process are lost once the child

process exits.

UsSing and Modifying the Search
Path

The “path®or “PATH” variable is searched when a user requests
for a utility.

The path is a local variable and is usually assigned a value in the
startup script.

To add a new directory to the path in the Korn shell use the : and

append to the end of the existing PA'

PAssing Environment Variables
to Child Processes

The “anset” command can be used for
removing a local variable.
An environmental variable can be removed
with the help of the “ansetenv” command.
The “export” command is used for making a
local variable available to a child process.

SHell Variable Manipulation

Remove local

(C shell family)
Remove environmental
(C shell family)

Remove variable
regardless of whether
local or environmental
(sh family)

List ALL variables

(sh family)

Employing Advanced User
Features

Completing filenames:

= The variable filec in a tesh shell, when set in the envirc
instructs the shell to search for matching filenames.
When a shell cannot distinguish between two existing files, it
either displays all matching files or simply es or produces
beeps.
Filename completion can also be used for files, directories, and

executables.

5/8/2012

5/8/2012

Employing Advanced User Employing Advanced User
Features Features

Completing filenames (continued): Evaluating shell variables:

= The filename-completion variable can be set in the Korn shell BB E NSRBI - 1< provide built-in variables that are

by executing either the “set -o vi” or the “set -o vi- useful in interacting with the shell.
tabcomplete” command. = The SECOND shell variable can be used for determinin,
= The “set -0 vi” or “set +0 posix” commands can be used for number of seconds since the shell was started.
turning on the file-completion feature if it is not working. = Inabash shell, the PROMPT_COMMAND variable allows a user

. 5 . L~ to execute any command just before it displays the prompt.
= Many C shells include filename completion, but use the ESC 7 J ey F F

q 3 2 = A dot file is a run-control file for a specific utility or shell.
key to trigger completion of filenames. K

Employing Advanced User Employing Advanced User
Features Features

Customizing shell startup files: Customizing shell startup files (continued):
= The csh shell can be customized with the help of the = A system setup to start a ksh file reads the .kshrc file
.cshre file in the /ete directory since it is always read at startup.
at startup. = The kshrc file is not read if the ENV environmental
= The bash shell reads the file .bashrc whenever it variable is not set.

starts. = The ksh shell is programmed to read at startup

= A system setup to start a ksh file reads the . i whatever file is the value of the ENV variable.
at startup.

Summary

= A variety of command line options exist for
interacting with shells.

A child process started by the shell for each
utility execution inherits the input, output, and
error destinations, as well as environmental
variables.

Environment and user defined shell variables
provide user flexibility for interacting within
the unix environment.

