
5/8/2012

1

File Security, Setting and Using
Permissions

Chapter 9

 To show the three protection and security mechanisms that UNIX
provides

 To describe the types of users of a UNIX file
 To discuss the basic operations that can be performed on a UNIX

file
 To explain the concept of file access permissions/ privileges in

UNIX
 To discuss how a user can determine access privileges for a file
 To describe how a user can set and change permissions for a file
 To cover the commands and primitives

 ? , ~ , * , chmod, groups, ls – l, ls – ld, umask

 All login names are public knowledge and can
be found in the /etc/passwd file.

 Change password using:
 yppasswd, nispasswd

 Discovering a user’s password:
 1) You, as the owner of an account, inform others of

your password
 2) a password can be guessed by another user
 3) a user’s password can be extracted by “brute

 force”

Encryption-based Protection

 Types of users
 User (owner), group, others

 A user with multiple groups

 Types of Access Permissions
 Read, write, and execute

 Access Permissions for Directories
 Directory search

Copyright © 2005 Pearson Addison-Wesley. All rights

reserved.

Protection based on Access

Permission (Contd)

5/8/2012

2

Permission Field For Users

Copyright © 2005 Pearson Addison-Wesley. All rights

reserved.

Protection based on Access

Permission (Contd)

 The “ls –l” command displays the permissions for regular files

and directories.

 Every slot in the permissions field is occupied by either a dash or

a letter.

 A minus sign indicates that a particular permission is denied.

 The “t” field in the directory permissions is a special permission

called the sticky bit.

 Determining File Access Privileges

 ls –l , ls –ld

Copyright © 2005 Pearson Addison-Wesley. All rights

reserved.

Determining and Changing File Access

Privileges

• Determining File Access Privileges

–ls –l , ls –ld

Determining and Changing File

Access Privileges (Contd)

5/8/2012

3

 The “chmod” command can accept permission
settings in the form of letter arguments or
numbers.

 The mnemonic assignment method allows a
user to set permissions for each type of user in
several ways.

 Assigning specific permissions.

 Adding and deleting permissions. Assigning All Permissions to All Users

Assigning Specific Permissions to Specific Users Denying Specific Permission to Specific Users

 Numbers can also be used for conveying
permissions information for all the three types
of users.

 The number 700 specifies the rwx permissions
only for the owner of a file.

 The numerical approach allows a user to
specify the exact permissions to be granted
regardless of the current permission.

 Combination permissions are specified using
the sum of the values for the specific
permissions.

 The primitives (0, 1, 2, and 4) can be added to
grant any combination of permissions.

 The combination of the three numbers 1, 2, and
4 can be used to express the eight possible
combinations of execute, write, and read
permissions.

5/8/2012

4

 Changing File Access Privileges
 chmod [options] octal-mode file-list

 chmod [options] symbolic-mode file-list

Examples of chmod Command

 The Set-User-ID (SUID) Bit
 If this bit is set for a file containing an executable program for a command,

the command takes on the privileges of the owner of the file when it
executes.

 chmod 4xxx file-list

 chmod u+s file-list

 The Set-Group-ID (SGID) Bit
 Causes the access permission of the process to take the group identity of

the group to which the owner of the file belongs.
 chmod 2xxx file-list

 chmod g+s file-list

 The Sticky Bit
 Can be set for a directory to ensure that an unprivileged user cannot

remove or rename files of other users in that directory.
 chmod 1xxx file-list

 chmod +t file-list

Special Access Bits

5/8/2012

5

 Execute permissions have a different impact on
a directory than on a file.

 A directory cannot be listed if it does not have
execute permissions.

 A file cannot be accessed if the directory does
not have execute permissions.

 The files in a subdirectory within the parent directory cannot be

accessed if there are no execute permissions on the parent

directory.

 With only execute permission on a directory, a user can “cd” into

it, but cannot get a listing of its files.

 The permissions on directories are specified for user, group, and

other in the same fields of the long listing that are associated with

file permissions.

 The operating system initially sets permissions
for the owner as read and write when a file is
created.

 These default permission settings are
determined by the umask value.

 The umask value determines which
permissions are masked from being set.

 The umask setting determines the value of
permissions for new files as they are created.

 Changing the umask has no effect on an
existing file.

 The umask setting is initially determined by
default on the system, but can be modified
from the shell command-line.

Umask Values

 umask mask
 The access permission value on executable file or

directory is computed by:
 file access permission = 777 – mask

 Current Value of the mask:
 $ umask

 777

 $

5/8/2012

6

 The value of umask determines the initial
permissions when files and directories are
created.

 The “cp” command directly copies the
permissions of the source file to the destination
file if the umask is not set.

 The “–p” option, when specified, instructs the
cp utility to ignore the umask when copying
files.

 The “cat” utility can also be used for
duplicating a file with the original permissions
without applying the umask effect.

 The shell follows umask instructions when
creating files.

 Permissions are added up to the limit set by
umask when mnemonic arguments are used
for specifying permissions in the chmod
command.

 Read permission is needed to access a file’s
contents with a utility.

 Write and execute permissions are required for
adding a file, removing a file, or changing a
file’s name in a directory.

 A user must have the execute permission to cd
into a directory or include the directory in a
path.

 Letters or numbers can be used for specifying
permissions information in the chmod
command.

 Read and execute permissions are required by
a script file to execute as a child process.

 Files and directories are granted initial
permissions at creation determined by the
umask setting at the time that the file or
directory is created.

