UNIX and
Linux

CST 126 - LESSON 11

Controlling User Process
Chapter 10

Managing and Processing
Processes

Every running program is a separate entity, called
a process.

A process consists of several components working
together, including the code, data, CPU activity,
memory, input, output, and error handling.

Each process involves reading instructions,
accessing computer memory, reading from
evaluating arguments, performing calculati

and writing to output.

Every process on the system has its own unique
process ID number.

A process is a program in execution.

Running Multiple Processes
Simultaneously (contd.)

Firstcome, First-serve(FCFS)

= The process that enters the system first is assigned the highest
priority

Assign priority value based on the amount of time a

processor has used the CPU; a newly arriving process

or a process that spends most of its time doing I/O

operations(I/O bound processes)

Round Robin (RR)

= A process gets to use the CPU for one quantum and then the
CPU is given to another process, the next process in the queue
of processes waiting to use the CPU

Objectives

To deseribe the concept of a process, and execution of
multiple processes on a computer system with a single
U) 3

To explain how a shell executes commands
To discuss process attributes

To explain the concept of foreground and background
processes, including a description of a daemon

To describe sequential and parallel execution of
commands

To discuss process and job control i foreground
and background processes, suspending processes,
moving foreground processes into background and vice
versa, and terminating processes

To describe the UNIX process hierarchy

To cover commands and primitives

Running Multiple Processes
Simultaneously

The time a process is ‘in” the CPU burst before
it is switched ‘out’ of the CPU is called the
quantum or time slice

The technique used to choose the process that
gets to use the CPU is called CPU scheduling

Running Multiple Processes
Simultaneously (contd.)

Processor Scheduler

= The operatinﬁ system code that implements the CPU
scheduling algorithm

Dispatcher

= The OS code that takes the CPU away from the
current process and hands it over to the newly
scheduled process .

Priority value=Threshold priority + Nice value

+(Recent CPU usage/2) >

g'(l)lreshold priority is an integer having a value of 40 or

CPU usage is the number of clock ticks for which the
process has used the CPU

Iz\(I)ice value is a positive integer with a default value of

5/8/2012

5/8/2012

Unix Process States Unix Process States

Briel Description of the UN

= A'UNIX process can be in one of many
") The process is ready 1o run but does not have the CPU. Based an the
states’, as it moves from one state to another scheduling algorithm, the schaduler decided to give the CPU ta anoth-

er process. Several processes can be in this state, but on a machine

, eventually finishing its execution(normally with a single CPU, only one can be executing lusing the CPUI.
or abnormally) and getting out of the system - Tha process is actually running (using the CPL)
8)

The process is waiting for an event. Possible events are an I/0 (e.q.,
diskterminal read or wiite) is completed, a child process exits (parent
waits for one or more of its children ta ext), or the sleep period expires|
for the process.

The process is ready to run, but it has been temporarily put on the disk
- @ fon the swap space); perhaps it needs more memary and there is not
enough available at this time.
A dying pracess is said 1o be in a zombie state. Usually, when the par-
@ entof a pracess terminates befare it execulas the exit call, it bacomes
& zombie process. The process finishes and finds that the parentis not

Pending 110 waiting. The zombie processes are finished for all practical purposes
Child to exic and do not reside in the memary, but they still have some kernel
resources allocated to them and cannat be taken out of the system.
: All zombies (and their live children) are eentually adopted by the
Sleeping granddaddy, the init process, which ramoves them from the system.

jure 134 UNIX process state diagram

Execution of shell Commands EXecution of shell Commands (contd.)

A'shell command can be external or internal @ Shell'script: a series of shell commands in a file

An internal (built-in) command is one whose code = Execution of a shell script is different from execution of
is part of the shell process an external binary command

= bg, cd,continue, echo, exec = Execution of a shell script:

An external commandis one whose code is in a file; = The current shell creates a child shell and lef

contents of the file can be binary code or shell script E}ylrﬂo(}w. B CURER 5 in the shell

= grep,more ,cat, mkdir, rmdir, Is The child shell creates a child for every command it
A UNIX process can create another process by executes

using the fork system call, which creates an e While the child shell is executing commands

main memory map of the original proce script file, the parent shell waits for the child to

The forking process is known as the parent process terminate, after which it comes out of waiting state

. . and resumes execution
The created (forked) process is called the child Only hild shell i S 1
prUCl’SS L] nly purpose or child shell 1s to execute commands.

UID PID NI ADDR SZ WCHAN TTY TIME CMD

PI’OCGSS Att['] I) L]teS 1004 7719 - 620 waitd tty3 00:00:00 bash
1004 7746 = 639 waitd4 tty3 00:00:00 sh
b 3 1004 tty3 00:00:00
Owner's ID, process name, process ID(PID), process state, PID of Y 2o
parent process, length of time process has been running
The ps command can be used to view the attributes of of proc
running on the system
ps [options] (System V version) L
Purpose Report process statu: oo Lol Attt ri b utes
Output Attributes of process running on the sy: ot bacharound FAaciss subendid, ol ey ocedi
. Zormbie rocars fvshw bt e ysn s kel espurcex

Commonly used options/features: Created. for pxamote, when parant dies betors the process fishes)|

Display Information about the processes executing on

your terminal except the session header (your

LT T ————— ps -l
e o

4 5 £ Adarus: The mamoryor dak oddress o 3 rscess, a3 locaton i the
Iman maimory o ik o Sepoud. 0o procera)

-u uidlist i forma abo sses belonging to the Sizu: The sze of the memory image of
5 ol Mol forruneg pocesses; processes that are ready ta run s
(UIDs separated by for o watig
5 1 ihe procens 5 waiting for

commas) o tacminal name & process is amachad to

Time:
¢ ran for batore sloeping or stospg
Usts the command used to start v process; the -
o m ¥ UNIX: otharwise, onh

The Top Command

5:07 up 36 days, 12:53, 3 users, load average: 0.03, 0.03,
99 total, 1 runnimy, 97 slesping, O stopped, 1 cowbie
1.3% us, 3.3% sy, 0.0% ni, 35.4% id, 0.0% wa, 0.0% hi, 0.0% =i
1518216k toval, 1492960K used, 25356k free, 191624k huffers
: 3143700k toral, 62408k used, 3088252k free, 1058320k cached

3308 852 7ed .0 0. 100,45 tap
21744 8728 1412 3 0. 105.05 %
37544 17m 5892 .3 1.2 E07:44.75 rhn-applet-gui
2968 508 436 0o, Fy i
0 o .o . : migracion/o
100,52 ksoftirgd/o
events/0

]
0
o
0
o
0
0
0
o
0
o
0
o

Eoreground and Background Process

and Related Commands

command (for foreground execution)
command &(for background execution)
fg[%jobid]
= Purpose Resume execution of the process with job number
‘jobid” in the foreiground or move background processes
to the foreground
= Commonly used values for ‘“%jobid”
% or %+ Current job
%- Previous job
%N Job Number N
%Name Job beginning with ‘Name’
%?Name Command containing ‘Name’

Eoreground and Background Process
andRelated Commands (contd.)

= jobs [option] [%jobid-list]

Purpose: Display the status of the
suspended and background
processes specified in ‘jobid-
list’; with no list, display the
status of the current job

Commonly used options/features:

-1 Also display PID of jobs

Process and Job control

Unix is responsible for several process
related activities including process creation,
process termination, running proces

the foreground and background,
suspending processes and switching
processes from foreground to background
and vice versa

ses in

Foreground and Background Process

and Related Commands (contd.)

= bg[%jobid-list]

Purpose: Resume execution of suspended
rocesses/jobs with job numbers in “jobid-
Est’ in the background
Commonly used values for ‘%jobid":
% or %+ Curent job
%- Previous job
%N Job Number N
%Name Job beginning with ‘Name’
%?Name Command containing ‘Name’

UNIX Daemons

= A daemon is a system process running in

the background

= Used to offer various types of services to

users and handle system administration
tasks

= Print, e-mail, finger

5/8/2012

beguential and Parallel Execution of
Commands

= cmdl,;cmd2;...;condN

Purpose: Execute the ‘cnd?’,
‘emd?2’, ‘cmd3’,...,/cmdN’
mmands sequentially

m cmdl& cmd2&...cmdN&

Purpose: Execute commands
‘emd1’,cmd?2’,...”cmdN’ in
parallel as separate processes

beguential and Parallel Execution of
Commands (contd.)

= UNIXallows you to group commands and
execute them as one process by separating
commands using semicolons and enclosing
them in parenthesis. This is called command
grouping.
& (ecmdl;cmd2;...cmdN)
Purpose Execute commands
‘emd1’,’emd?’..., ecmdN’
sequentially but as one process

Abhormal Termination of Commands

and Processes

Can terminate a foreground process by
S =C>

Can terminate a background proce
= Use the kill command

= By first bringing the process into foregroun
using the fg command and then pressing

Sequential and Parallel cution of
Commands (contd.)

Hay 7 10:14
donaldso prs/1 Jun 12 22135 (ads1-75-21-230-35.dsl. sgnomi, shoglobal.net)
jameshro pts/2 Jun 12 23:02 (ads1-70-141-5-181.dsl. sgnomi. sheglobal . net)
[2] + Dome echo Hello, World!

date

beguential and Parallel Execution of
Commands (contd.)

§ (date; echo Hello, World!);

Tue Jun 12 23:17:47 EDT 2007

Hello, Worla!

root 0 Hay 7 10:12

donaldse pte/i Jun 12 22335 (adsl-75-21-230-35. dal.sgnmi.sheglabal .net)
jamesbro prs/z Jun 12 23:02 {adsl-70-191-5-181.ds1.sgnumi.sheglobal . net)
i

Abhormal Termination of Commands
and Processes (contd.)

The primary purpose of a ki11 command is to is to
send a signal (software interrupt) to a process

A process can take one of three actions upon receiving
a signal

= Accept the default action as determined by the UNIX kernel
= Ignore the signal

= Intercept the signal and take a user-defined action

A signal caused by an event internal to a process is
Kknown as an internal signal or trap.

A signal caused by an event external to a proces
called an external signal

5/8/2012

5/8/2012

yrmal Termination of Commands Abnormal Termination of

and Processes (contd.) OMMmands and Processes (contd.)

kill [-signal_number] proc-list

Kill -1

Purpose Send the 0 nohup commands [args]
whose PIDs or jobIDs are specifi

1
with %.The command kill =1 return a list o nals and their nan Purpose: Run command and make it immune to the
(on some systems, numbers are not displayed)

Commonly used signal_numbers: hangup SIgnaI
Hangup § nohup find / -name foo -print 1> foo.paths 2> /dev/mull &
Interrupt(<Ctrl-C>) [1] 15928
Quit(<Ctrl-\>)
re kill s
gnal (default signal number)

Process Hierarchy in UNIX Summary

The process which has no parent is called the init P . . " N J =l 55
process and is the granddady of all the processes that rogramsrunning in a system are executed by a

are created so long as the system is up and running process that reads the appropriate code and

The im't.process has a PID of 1 : accomplishes the tasks.
The login process prompts you for your password and , ,
checks the validity of your login name and ps d All the processes have their own unique PID, the
The swapper and init processes exist throughout the life PID of their parent, an owner, group, memory

time of a system . 9
g Y , . code, input, output, error, and their tty port.
The getty process, which monitors a terminal line, live: Pu L7 A Y P

for as long as the terminal is attached to tt A'command-line can consists of one process or a
Usethe ps -efll command to displa series of processes connected by pipes or
the currently running proce ¢ e [

the parent-child relationship i semicolons, and is often called a job.

The kill command terminates processes identified
by either their process ID or job number/job name.

