
1

Programming Logic and 

Design
Sixth Edition

Chapter 2

Working with Data, Creating Modules, 

and Designing High-Quality Programs

Objectives

In this chapter, you will learn about:

• Declaring and using variables and constants

• Assigning values to variables

• The advantages of modularization

• Modularizing a program

• The most common configuration for mainline logic

Programming Logic & Design, Sixth Edition 2

Objectives (continued)

In this chapter, you will learn about: (continued)

• Hierarchy charts

• Some features of good program design

Programming Logic & Design, Sixth Edition 3

Declaring and Using Variables

and Constants

• Data items 

– All the text, numbers, and other information that are 

processed by a computer

– Stored in variables in memory

• Different forms

– Variables

– Literals, or unnamed constants

– Named constants

Programming Logic & Design, Sixth Edition 4

Working with Variables

• Named memory locations 

• Contents can vary or differ over time

• Declaration 

– Statement that provides a data type and an identifier 

for a variable

• Identifier

– Variable’s name

Programming Logic & Design, Sixth Edition 5

Working with Variables (continued)

Figure 2-1 Flowchart and pseudocode for the number-doubling program

Programming Logic & Design, Sixth Edition 6



2

Working with Variables (continued)

• Data type 

– Classification that describes: 

• What values can be held by the item

• How the item is stored in computer memory

• What operations can be performed on the data item

• Initializing a variable

– Declare a starting value for any variable

• Garbage

– Variable’s unknown value before initialization

Programming Logic & Design, Sixth Edition 7 Programming Logic & Design, Sixth Edition 8

Figure 2-2 Flowchart and pseudocode of number-doubling program 

with variable declarations

Naming Variables

• Programmer chooses reasonable and descriptive 

names for variables

• Programming languages have rules for creating 

identifiers

– Most languages allow letters and digits

– Some languages allow hyphens

• Some languages allow dollar signs or other special 

characters

• Different limits on the length of variable names

Programming Logic & Design, Sixth Edition 9

Naming Variables (continued)

• Camel casing

– Variable names such as hourlyWage have a 

―hump‖ in the middle

• Variable names used throughout book

– Must be one word

– Should have some appropriate meaning

Programming Logic & Design, Sixth Edition 10

Understanding Unnamed, Literal 

Constants and their Data Types

• Numeric constant (or literal numeric constant)

– Specific numeric value

• Example: 43

– Does not change

• String constant (or literal string constant)

– String of characters enclosed within quotation marks

– Example: ―Amanda‖

• Unnamed constants

– Do not have identifiers like variables do

Programming Logic & Design, Sixth Edition 11

Understanding the Data Types of 

Variables

• Numeric variable 

– Holds digits 

– Can perform mathematical operations on it

• String variable 

– Can hold text

– Letters of the alphabet

– Special characters such as punctuation marks

• Assign data to a variable 

– Only if it is the correct type

Programming Logic & Design, Sixth Edition 12



3

Declaring Named Constants

• Named constant 

– Similar to a variable

– Can be assigned a value only once

– Assign a useful name to a value that will never be 

changed during a program’s execution

• Magic number 

– Unnamed constant

– Purpose is not immediately apparent

– Avoid this

Programming Logic & Design, Sixth Edition 13

Assigning Values to Variables

• Assignment statement

– set myAnswer = myNumber * 2

• Assignment operator

– Equal sign 

– Always operates from right to left

• Valid

– set someNumber = 2

– set someNumber = someOtherNumber

• Not valid 

– set 2 + 4 = someNumber

Programming Logic & Design, Sixth Edition 14

Performing Arithmetic Operations

• Standard arithmetic operators:

– + (plus sign)—addition

– − (minus sign)—subtraction

– * (asterisk)—multiplication

– / (slash)—division

Programming Logic & Design, Sixth Edition 15

Performing Arithmetic Operations 

(continued)

• Rules of precedence

– Also called the order of operations

– Dictate the order in which operations in the same 

statement are carried out

– Expressions within parentheses are evaluated first

– Multiplication and division are evaluated next

• From left to right

– Addition and subtraction are evaluated next

• From left to right

Programming Logic & Design, Sixth Edition 16

Performing Arithmetic Operations 

(continued)

• Left-to-right associativity

– Operations with the same precedence take place 

from left to right

Programming Logic & Design, Sixth Edition 17

Performing Arithmetic Operations 

(continued)

Table 2-1 Precedence and associativity of five common operators

Programming Logic & Design, Sixth Edition 18



4

Understanding the Advantages

of Modularization

• Modules

– Subunit of programming problem

– Also called subroutines, procedures, functions, or 

methods

• Modularization

– Breaking down a large program into modules

– Reasons

• Abstraction

• Allows multiple programmers to work on a problem

• Reuse your work more easily

Programming Logic & Design, Sixth Edition 19

Modularization Provides Abstraction

• Abstraction 

– Paying attention to important properties while 

ignoring nonessential details

– Selective ignorance

• Newer high-level programming languages 

– Use English-like vocabulary 

– One broad statement corresponds to dozens of 

machine instructions

• Modules provide another way to achieve 

abstraction

Programming Logic & Design, Sixth Edition 20

Modularization Allows Multiple 

Programmers to Work on a Problem

• More easily divide the task among various people

• Rarely does a single programmer write a 

commercial program

– Professional software developers can write new 

programs quickly by dividing large programs into 

modules

– Assign each module to an individual programmer or 

team

Programming Logic & Design, Sixth Edition 21

Modularization Allows You to Reuse 

Your Work

• Reusability

– Feature of modular programs

– Allows individual modules to be used in a variety of 

applications

– Many real-world examples of reusability

• Reliability

– Feature of programs that assures you a module has 

been tested and proven to function correctly

Programming Logic & Design, Sixth Edition 22

Modularizing a Program

• Main program

– Basic steps (mainline logic) of the program

• Include in a module

– Header

– Body

– Return statement

• Naming a module 

– Similar to naming a variable

– Module names are followed by a set of parentheses

Programming Logic & Design, Sixth Edition 23

Modularizing a Program (continued)

• When a main program wants to use a module

– ―Calls‖ the module’s name

• Flowchart 

– Symbol used to call a module is a rectangle with a 

bar across the top

– Place the name of the module you are calling inside 

the rectangle

– Draw each module separately with its own sentinel 

symbols

Programming Logic & Design, Sixth Edition 24



5

Programming Logic & Design, Sixth Edition 25

Figure 2-3 Program that produces a bill using only main program

Modularizing a Program (continued)

• Determine when to break down any particular 

program into modules

– Does not depend on a fixed set of rules

– Programmers do follow some guidelines

– Statements should contribute to the same job

• Functional cohesion

Programming Logic & Design, Sixth Edition 26

Declaring Variables and Constants

within Modules

• Place any statements within modules

– Input, processing, and output statements

– Variable and constant declarations

• Variables and constants declared in a module are 

usable only within the module

– Visible

– In scope

• Portable

– Self-contained units that are easily transported

Programming Logic & Design, Sixth Edition 27 Programming Logic & Design, Sixth Edition 28

Figure 2-5 The billing program with constants declared within the module

Declaring Variables and Constants

within Modules (continued)

• Global variables and constants 

– Declared at the program level

– Visible to and usable in all the modules called by the 

program

Programming Logic & Design, Sixth Edition 29

Understanding the Most Common

Configuration for Mainline Logic

• Mainline logic of almost every procedural computer 

program follows a general structure

– Declarations for global variables and constants

– Housekeeping tasks

– Detail loop tasks

– End-of-job tasks

Programming Logic & Design, Sixth Edition 30



6

Understanding the Most Common

Configuration for Mainline Logic 

(continued)

Figure 2-6 Flowchart and pseudocode of mainline logic for a typical 

procedural program

Programming Logic & Design, Sixth Edition 31

Creating Hierarchy Charts

• Hierarchy chart 

– Shows the overall picture of how modules are 

related to one another

– Tells you which modules exist within a program and 

which modules call others

– Specific module may be called from several 

locations within a program

• Planning tool 

– Develop the overall relationship of program modules 

before you write them 

• Documentation tool
Programming Logic & Design, Sixth Edition 32

Features of Good Program Design

• Use program comments where appropriate

• Identifiers should be well-chosen

• Strive to design clear statements within your 

programs and modules

• Write clear prompts and echo input

• Continue to maintain good programming habits as 

you develop your programming skills

Programming Logic & Design, Sixth Edition 33

Using Program Comments

• Program comments 

– Written explanations

– Not part of the program logic 

– Serve as documentation for readers of the program

• Syntax used differs among programming 

languages

• Flowchart

– Use an annotation symbol to hold information that 

expands on what is stored within another flowchart 

symbol

Programming Logic & Design, Sixth Edition 34

Using Program Comments (continued)

Programming Logic & Design, Sixth Edition 35

Figure 2-12 Pseudocode that declares some variables and includes comments

Programming Logic & Design, Sixth Edition 36

Figure 2-13 Flowchart that includes some annotation symbols



7

Choosing Identifiers

• General guidelines

– Give a variable or a constant a name that is a noun

– Give a module an identifier that is a verb

– Use meaningful names

• Self-documenting

– Use pronounceable names

– Be judicious in your use of abbreviations

– Avoid digits in a name

Programming Logic & Design, Sixth Edition 37

Choosing Identifiers (continued)

• General guidelines (continued)

– Use the system your language allows to separate 

words in long, multiword variable names

– Consider including a form of the verb to be

– Name constants using all uppercase letters 

separated by underscores (_)

• Organizations sometimes enforce different rules for 

programmers to follow when naming variables

– Hungarian notation

Programming Logic & Design, Sixth Edition 38

Designing Clear Statements

• Avoid confusing line breaks

• Use temporary variables to clarify long statements

Programming Logic & Design, Sixth Edition 39

Avoiding Confusing Line Breaks

• Most modern programming languages are free-

form

• Take care to make sure your meaning is clear

• Do not combine multiple statements on one line

Programming Logic & Design, Sixth Edition 40

Using Temporary Variables to Clarify 

Long Statements

• Temporary variable 

– Work variable

– Not used for input or output

– Working variable that you use during a program’s 

execution

• Consider using a series of temporary variables to 

hold intermediate results

Programming Logic & Design, Sixth Edition 41

Using Temporary Variables to Clarify 

Long Statements (continued)

Figure 2-14 Two ways of achieving the same salespersonCommission 

result

Programming Logic & Design, Sixth Edition 42



8

Writing Clear Prompts and Echoing 

Input

• Prompt 

– Message displayed on a monitor to ask the user for 

a response 

– Used both in command-line and GUI interactive 

programs

• Echoing input

– Repeating input back to a user either in a 

subsequent prompt or in output

Programming Logic & Design, Sixth Edition 43

Writing Clear Prompts and Echoing 

Input (continued)

Figure 2-15 Beginning of a program that accepts a name 

and balance as input

Programming Logic & Design, Sixth Edition 44

Programming Logic & Design, Sixth Edition 45

Figure 2-16 Beginning of a program that accepts a name and balance as 

input and uses a separate prompt for each item

Maintaining Good Programming Habits

• Every program you write will be better if you: 

– Plan before you code

– Maintain the habit of first drawing flowcharts or 

writing pseudocode

– Desk-check your program logic on paper

– Think carefully about the variable and module 

names you use

– Design your program statements to be easy to read 

and use

Programming Logic & Design, Sixth Edition 46

Summary

• Variables 

– Named memory locations with variable contents

• Equal sign is the assignment operator

• Break down programming problems into 

reasonable units called modules

– Include a header, a body, and a return statement

• Mainline logic of almost every procedural computer 

program can follow a general structure

• As your programs become more complicated: 

– Need for good planning and design increases

Programming Logic & Design, Sixth Edition 47


