
1

Programming Logic and

Design

Sixth Edition

Chapter 4

Making Decisions

Objectives

In this chapter, you will learn about:

• Evaluating Boolean expressions to make

comparisons

• The relational comparison operators

• AND logic

• OR logic

• Making selections within ranges

• Precedence when combining AND and OR

operators

Programming Logic & Design, Sixth Edition 2

Evaluating Boolean Expressions

to Make Comparisons

• Boolean expression

– Value can be only true or false

– Used in every selection structure

Programming Logic & Design, Sixth Edition 3

Evaluating Boolean Expressions to

Make Comparisons (continued)

• Dual-alternative (or binary) selection structure

– Provides an action for each of two possible

outcomes

Programming Logic & Design, Sixth Edition 4

Figure 4-1 The dual-alternative selection structure

Programming Logic & Design, Sixth Edition 5

Evaluating Boolean Expressions to

Make Comparisons (continued)

• Single-alternative (or unary) selection structure

– Action is provided for only one outcome

– if-then

Figure 4-2 The single-alternative selection structure

Programming Logic & Design, Sixth Edition 6

Figure 4-3 Flowchart and pseudocode for overtime payroll program

2

Programming Logic & Design, Sixth Edition 7

Figure 4-3 Flowchart and pseudocode for overtime payroll program (continued)

Evaluating Boolean Expressions to

Make Comparisons (continued)

• if-then-else decision

– then clause

• Holds the action or actions that execute when the

tested condition in the decision is true

– else clause

• Executes only when the tested condition in the

decision is false

Programming Logic & Design, Sixth Edition 8

Using the Relational Comparison

Operators

• Relational comparison operators

– Six types supported by all modern programming

languages

– Binary

– Two values compared can be either variables or

constants

• Trivial expressions

– Will always evaluate to the same result

– Example: 20 = 20?

Programming Logic & Design, Sixth Edition 9 Programming Logic & Design, Sixth Edition 10

Table 4-1 Relational comparisons

Programming Logic & Design, Sixth Edition 11

Using the Relational Comparison

Operators (continued)

• Any logical situation can be expressed with only three
types of comparisons: = , > , and <

– Operators >= and <= are not necessary but make code

more readable

• “Not equal” operator

– Most confusing of comparisons

– Most likely to be different in different languages

Programming Logic & Design, Sixth Edition 12

Using the Relational Comparison

Operators (continued)

Figure 4-5 Using a negative comparison

3

Programming Logic & Design, Sixth Edition 13

Using the Relational Comparison

Operators (continued)

Figure 4-6 Using the positive equivalent of the negative comparison in Figure 4-5

Avoiding a Common Error with

Relational Operators

• Common errors

– Using the wrong operator

– Missing the boundary or limit required for a selection

Programming Logic & Design, Sixth Edition 14

Programming Logic & Design, Sixth Edition 15

Understanding AND Logic

• Compound condition

– Asks multiple questions before an outcome is

determined

• AND decision

– Requires that both of two tests evaluate to true

– Requires a nested decision (nested if)

• Using nested if statements

– Second selection structure is contained entirely

within one side of first structure

– else clause paired with last if

Programming Logic & Design, Sixth Edition 16

Figure 4-7 Flowchart and pseudocode for cell phone billing program

Programming Logic & Design, Sixth Edition 17

Figure 4-7 Flowchart and pseudocode for cell phone billing program (continued)

Nesting AND Decisions for Efficiency

• When nesting decisions

– Either selection can come first

• Performance time can be improved by asking

questions in the proper order

• In an AND decision, first ask the question that is

less likely to be true

– Eliminates as many instances of the second decision

as possible

– Speeds up processing time

Programming Logic & Design, Sixth Edition 18

4

Programming Logic & Design, Sixth Edition 19

Using the AND Operator

• Conditional AND operator

– Ask two or more questions in a single comparison

– Each Boolean expression must be true for entire

expression to evaluate to true

• Truth tables

– Describe the truth of an entire expression based on

the truth of its parts

• Short-circuit evaluation

– Expression evaluated only as far as necessary to

determine truth

Programming Logic & Design, Sixth Edition 20

Using the AND Operator (continued)

Table 4-2 Truth table for the AND operator

Programming Logic & Design, Sixth Edition 21

Figure 4-9 Using an AND operator and the logic behind it

Avoiding Common Errors in an AND

Selection

• Second decision must be made entirely within the

first decision

• In most programming languages, logical AND is a

binary operator

– Requires complete Boolean expression on both

sides

Programming Logic & Design, Sixth Edition 22

Programming Logic & Design, Sixth Edition 23

Understanding OR Logic

• OR decision

– Take action when one or the other of two conditions is
true

• Example

– “Are you free for dinner Friday or Saturday?”

Writing OR Decisions for Efficiency

• May ask either question first

– Both produce the same output but vary widely in

number of questions asked

• If first question is true, no need to ask second

• In an OR decision, first ask the question that is

more likely to be true

– Eliminates as many repetitions as possible of

second decision

Programming Logic & Design, Sixth Edition 24

5

Programming Logic & Design, Sixth Edition 25

Using the OR Operator

• Conditional OR operator

– Ask two or more questions in a single comparison

• Only one Boolean expression in an OR selection

must be true to produce a result of true

• Question placed first will be asked first

– Consider efficiency

• Computer can ask only one question at a time

Programming Logic & Design, Sixth Edition 26

Using the OR Operator(continued)

Table 4-3 Truth table for the OR operator

Programming Logic & Design, Sixth Edition 27

Figure 4-13 Using an OR operator and the logic behind it

Avoiding Common Errors in an OR

Selection

• Second question must be self-contained structure

with one entry and exit point

• Request for A and B in English often translates to a

request for A or B logically

– Example

• “Give a bonus to anyone who has sold at least three

items and to anyone who has sold $2000”

• “Give a bonus to anyone who has sold at least three

items or $2000”

Programming Logic & Design, Sixth Edition 28

Programming Logic & Design, Sixth Edition 29

Avoiding Common Errors in an OR

Selection (continued)

Figure 4-14 Unstructured flowchart for determining customer cell phone bill

Programming Logic & Design, Sixth Edition 30

Avoiding Common Errors in an OR

Selection (continued)

Figure 4-15 Incorrect logic that attempts to provide a discount for young and old

movie patrons

6

Programming Logic & Design, Sixth Edition 31

Avoiding Common Errors in an OR

Selection (continued)

Figure 4-16 Correct logic that provides a discount for young and old movie patrons

Programming Logic & Design, Sixth Edition 32

Avoiding Common Errors in an OR

Selection (continued)

Figure 4-17 Incorrect logic that attempts to charge full price for patrons over 12

and under 65

Programming Logic & Design, Sixth Edition 33

Avoiding Common Errors in an OR

Selection (continued)

Figure 4-18 Correct logic that charges full price for patrons over 12 and under 65

Making Selections within Ranges

• Range check

– Compare a variable to a series of values between

limits

• Use the lowest or highest value in each range

• Adjust the question logic when using highest

versus lowest values

• Should end points of the range be included?

– Yes: use >= or <=

– No: use < or >

Programming Logic & Design, Sixth Edition 34

Programming Logic & Design, Sixth Edition 35

Making Selections within Ranges

(continued)

Figure 4-19 Discount rates based on items ordered

Programming Logic & Design, Sixth Edition 36

Figure 4-20 Flowchart and pseudocode of logic that selects correct discount

based on items

7

Programming Logic & Design, Sixth Edition 37

Avoiding Common Errors When Using

Range Checks

• Avoid dead or unreachable paths

– Don’t check for values that can never occur

– Requires some prior knowledge of the data

• Never ask a question if there is only one possible

outcome

• Avoid asking a question when the logic has already

determined the outcome

Programming Logic & Design, Sixth Edition 38

Understanding Precedence When
Combining AND and OR Selections

• Combine multiple AND and OR operators in an

expression

• When multiple conditions must all be true, use
multiple ANDs

if score1 >= 75 AND score2 >= 75 AND

score 3 >= 75 then

classGrade = “Pass”

else

classGrade = “Fail”

endif

Programming Logic & Design, Sixth Edition 39

Understanding Precedence When
Combining AND and OR Selections

(continued)

• When only one of multiple conditions must be true,
use multiple ORs

if score1 >= 75 OR score2 >= 75 OR

score3 >= 75 then

classGrade = “Pass”

else

classGrade = “Fail”

endif

Programming Logic & Design, Sixth Edition 40

Understanding Precedence When
Combining AND and OR Selections

(continued)
• When AND and OR operators are combined in the

same statement, AND operators are evaluated first

if age <= 12 OR age >= 65 AND rating = “G”

• Use parentheses to correct logic and force

evaluations to occur in the order desired

if (age <= 12 OR age >= 65) AND rating = “G”

Programming Logic & Design, Sixth Edition 41

Understanding Precedence When
Combining AND and OR Selections

(continued)

• Mixing AND and OR operators makes logic

more complicated

• Can avoid mixing AND and OR decisions by

nesting if statements

Programming Logic & Design, Sixth Edition 42

Figure 4-23 Nested decisions that determine movie patron discount

8

Programming Logic & Design, Sixth Edition 43

Summary

• Decisions involve evaluating Boolean expressions

• Use relational operators to compare values

• AND decision requires that both conditions be true

to produce a true result

• In an AND decision, first ask the question that is

less likely to be true

• OR decision requires that either of the conditions be

true to produce a true result

Summary (continued)

• In an OR decision, first ask the question that is

more likely to be true

• For a range check:

– Make comparisons with the highest or lowest values

in each range

– Eliminate unnecessary or previously answered

questions

Programming Logic & Design, Sixth Edition 44

