
1

Programming Logic and 

Design

Sixth Edition

Chapter 5

Looping

Objectives

• In this chapter, you will learn about:

– The advantages of looping

– Using a loop control variable

– Nested loops

– Avoiding common loop mistakes

– Using a for loop

– Common loop applications

Programming Logic & Design, Sixth Edition 2

Understanding the Advantages of 

Looping

• Looping makes computer programming efficient 

and worthwhile

• Write one set of instructions to operate on multiple, 

separate sets of data

• Loop: structure that repeats actions while some 

condition continues

Programming Logic & Design, Sixth Edition 3

Understanding the Advantages of 

Looping (continued)

Programming Logic & Design, Sixth Edition 4

Figure 5-1 The loop structure

Using a Loop Control Variable

• As long as a Boolean expression remains true, 
while loop’s body executes

• Control number of repetitions 

– Loop control variable initialized before entering 

loop

– Loop control variable tested

– Body of loop must alter value of loop control variable

• Repetitions controlled by:

– Counter

– Sentinel value

Programming Logic & Design, Sixth Edition 5

Using a Definite Loop 

with a Counter

• Definite loop

– Executes predetermined number of times

• Counter-controlled loop

– Program counts loop repetitions

• Loop control variables altered by:

– Incrementing

– Decrementing

Programming Logic & Design, Sixth Edition 6



2

Using a Definite Loop 

with a Counter (continued)

Programming Logic & Design, Sixth Edition 7

Figure 5-3 A counted while loop that outputs “Hello” four times

Using an Indefinite Loop 

with a Sentinel Value

• Indefinite loop

– Performed a different number of times each time the 

program executes

• Three crucial steps

– Starting value to control the loop must be provided

– Comparison must be made using the value that 

controls the loop

– Within the loop, value that controls the loop must be 

altered

Programming Logic & Design, Sixth Edition 8

Programming Logic & Design, Sixth Edition 9

Figure 5-4 An indefinite while loop that displays “Hello” as long as the user 

wants to continue

Understanding the Loop in a 

Program’s Mainline Logic

• Three steps that should occur in every properly 

functioning loop

– Provide a starting value for the variable that will 

control the loop

– Test the loop control variable to determine whether 

the loop body executes

– Alter the loop control variable

Programming Logic & Design, Sixth Edition 10

Nested Loops

• Nested loops: loops within loops

• Outer loop: loop that contains the other loop

• Inner loop: loop that is contained

• Needed when values of two (or more) variables 

repeat to produce every combination of values

Programming Logic & Design, Sixth Edition 11 Programming Logic & Design, Sixth Edition 12

Figure 5-8 Flowchart and pseudocode for AnswerSheet program



3

Avoiding Common Loop Mistakes

• Neglecting to initialize the loop control variable

• Neglecting to alter the loop control variable

• Using the wrong comparison with the loop control 

variable

• Including statements inside the loop that belong 

outside the loop

Programming Logic & Design, Sixth Edition 13

Avoiding Common Loop Mistakes 

(continued)

• Mistake: neglecting to initialize the loop control 

variable

– Example: get name statement removed

• Value of name unknown or garbage

• Program may end before any labels printed

• 100 labels printed with an invalid name

Programming Logic & Design, Sixth Edition 14

Programming Logic & Design, Sixth Edition 15

Figure 5-10 Incorrect logic for greeting program because the loop control 

variable initialization is missing

Avoiding Common Loop Mistakes 

(continued)

• Mistake: neglecting to alter the loop control variable

– Remove get name instruction from outer loop

• User never enters a name after the first one

• Inner loop executes infinitely

• Always incorrect to create a loop that cannot 

terminate

Programming Logic & Design, Sixth Edition 16

Programming Logic & Design, Sixth Edition 17

Figure 5-10 Incorrect logic for greeting program because the loop control 

variable is not altered

Avoiding Common Loop Mistakes 

(continued)

• Mistake: using the wrong comparison with the loop 

control variable

– Programmers must use correct comparison

– Seriousness depends on actions performed within a 

loop

• Overcharge insurance customer by one month

• Overbook a flight on airline application 

• Dispense extra medication to patients in pharmacy

Programming Logic & Design, Sixth Edition 18



4

Programming Logic & Design, Sixth Edition 19

Figure 5-12 Incorrect logic for greeting program because the wrong test is 

made with the loop control variable

Avoiding Common Loop Mistakes 

(continued)

• Mistake: including statements inside the loop that 

belong outside the loop

– Example: discount every item by 30 percent

– Inefficient because the same value is calculated 100 

separate times for each price that is entered

– Move outside loop for efficiency

Programming Logic & Design, Sixth Edition 20

Programming Logic & Design, Sixth Edition 21

Figure 5-13 Inefficient way to produce 100 discount price stickers for 

differently priced items

Programming Logic & Design, Sixth Edition 22

Figure 5-14 Improved discount sticker-making program

Using a for Loop

• for statement or for loop is a definite loop

• Provides three actions in one structure

– Initializes

– Evaluates

– Increments

• Takes the form:

for loopControlVariable = initialValue to 

finalValue step stepValue

do something

endfor

Programming Logic & Design, Sixth Edition 23

Using a for Loop (continued)

• Example

for count = 0 to 3 step 1

output “Hello”

endfor

• Initializes count to 0

• Checks count against the limit value 3

• If evaluation is true, for statement body prints the 

label

• Increases count by 1

Programming Logic & Design, Sixth Edition 24



5

Using a for Loop (continued)

• while statement could be used in place of for

statement

• Step value: number used to increase a loop 

control variable on each pass through a loop

– Programming languages can:

• Require a statement that indicates the step value

• Have a step value default of 1

• Specify step value when each pass through the 

loop changes the loop control variable by value 

other than 1

Programming Logic & Design, Sixth Edition 25

Common Loop Applications

• Using a loop to accumulate totals

– Examples

• Business reports often include totals

• List of real estate sold and total value

• Accumulator: variable that gathers values

– Similar to a counter

• Counter increments by one

• Accumulator increments by some value

Programming Logic & Design, Sixth Edition 26

Common Loop Applications 

(continued)

• Accumulate total real estate prices

– Declare numeric variable at beginning

– Initialize the accumulator to 0

– Read each transaction’s data record

– Add its value to accumulator variable

– Read the next record until eof

• Variables exist only for the life of the application

– Run the application a second time; variables occupy 

different memory location

Programming Logic & Design, Sixth Edition 27

Common Loop Applications 

(continued)

Programming Logic & Design, Sixth Edition 28

Figure 5-16 Month-end real estate sales report

Programming Logic & Design, Sixth Edition 29

Figure 5-17 Flowchart and pseudocode for real estate sales report program

Common Loop Applications 

(continued)

• Using a loop to validate data

– When prompting a user for data, no guarantee that 

data is valid

• Validate data: make sure data falls in acceptable 

ranges

• Example: user enters birth month

– If number is less than 1 or greater than 12

• Display error message and stop the program

• Assign default value for the month

• Reprompt the user for valid input

Programming Logic & Design, Sixth Edition 30



6

Programming Logic & Design, Sixth Edition 31

Figure 5-18 Reprompting a user once after an invalid month is entered

Programming Logic & Design, Sixth Edition 32

Figure 5-19 Reprompting a user continuously after an invalid month is entered

Common Loop Applications 

(continued)

• Limiting a reprompting loop

– Reprompting can be frustrating to a user if it 

continues indefinitely

– Maintain count of the number of reprompts

– Forcing a data item means: 

• Override incorrect data by setting the variable to a 

specific value

Programming Logic & Design, Sixth Edition 33

Common Loop Applications 

(continued)

• Validating a data type

– Validating data requires a variety of methods

– isNumeric() or similar method

• Provided with the language translator you use to write 

your programs

• Black box

– isChar() or isWhitespace()

– Accept user data as strings

– Use built-in methods to convert to correct data types

Programming Logic & Design, Sixth Edition 34

Common Loop Applications 

(continued)

Figure 5-21 Checking data for correct type

Programming Logic & Design, Sixth Edition 35

Common Loop Applications 

(continued)

• Validating reasonableness and consistency of data

– Many data items can be checked for reasonableness

– Good defensive programs try to foresee all possible 

inconsistencies and errors

Programming Logic & Design, Sixth Edition 36



7

Summary

• When using a loop, write one set of instructions 

that operates on multiple, separate data

• Three steps must occur in every loop

– Initialize loop control variable

– Compare variable to some value

– Alter the variable that controls the loop

• Nested loops: loops within loops

• Nested loops maintain two individual loop control 

variables

– Alter each at the appropriate time

Programming Logic & Design, Sixth Edition 37

Summary (continued)

• Common mistakes made by programmers

– Neglecting to initialize loop control variable

– Neglecting to alter loop control variable

– Using wrong comparison with loop control variable

– Including statements inside the loop that belong 

outside the loop

• Most computer languages support a for statement

• for loop used with definite loops

– When number of iterations is known

Programming Logic & Design, Sixth Edition 38

Summary (continued)

• for loop automatically:

– Initializes

– Evaluates

– Increments

• Accumulator: variable that gathers values

• Loops used to ensure user data is valid by 

reprompting the user

Programming Logic & Design, Sixth Edition 39


