
1

Programming Logic and 

Design

Sixth Edition

Chapter 6

Arrays

Objectives

In this chapter, you will learn about:

• Arrays and how they occupy computer memory

• Manipulating an array to replace nested decisions

• Using constants with arrays

• Searching an array

• Using parallel arrays

Programming Logic & Design, Sixth Edition 2

Objectives (continued)

• Searching an array for a range match

• Remaining within array bounds

• Using a for loop to process arrays

Programming Logic & Design, Sixth Edition 3

Understanding Arrays and How They 

Occupy Computer Memory
• Array

– Series or list of variables in computer memory

– All variables share the same name

– Each variable has a different subscript

• Subscript (or index)

– Position number of an item in an array

– Subscripts are always a sequence of integers

Programming Logic & Design, Sixth Edition 4

How Arrays Occupy Computer 

Memory

• Each item has same name and same data type

• Element: an item in the array

• Array elements are contiguous in memory

• Size of the array: number of elements it will hold

Programming Logic & Design, Sixth Edition 5

How Arrays Occupy Computer 

Memory (continued)

Programming Logic & Design, Sixth Edition 6

Figure 6-1 Appearance of a three-element array in computer 

memory



2

How Arrays Occupy Computer 

Memory (continued)

• All elements have same group name

– Individual elements have unique subscript

– Subscript indicates distance from first element

– Subscripts are a sequence of integers

• Subscripts placed in parentheses or brackets 
following group name

– Syntax depends on programming language

Programming Logic & Design, Sixth Edition 7

Manipulating an Array to Replace 

Nested Decisions

• Example: Human Resources Department 
Dependents report

– List employees who have claimed zero through five 
dependents

• Assume no employee has more than five dependents

• Application produces counts for dependent 
categories 

– Uses series of decisions

• Application does not scale up to more dependents

Programming Logic & Design, Sixth Edition 8

Programming Logic & Design, Sixth Edition 9

Figure 6-3 Flowchart and pseudocode of decision-making process using a 

series of decisions—the hard way

Manipulating an Array to Replace 

Nested Decisions (continued)

• Array reduces number of statements needed

• Six dependent count accumulators redefined as 

single array

• Variable as a subscript to the array

• Array subscript variable must be:

– Numeric with no decimal places

– Initialized to 0

– Incremented by 1 each time the logic passes through 

the loop

Programming Logic & Design, Sixth Edition 10

Programming Logic & Design, Sixth Edition 11

Figure 6-4 Flowchart and pseudocode of decision-making process—but 

still the hard way

Programming Logic & Design, Sixth Edition 12

Figure 6-5 Flowchart and pseudocode of decision-making process using 

an array—but still a hard way



3

Manipulating an Array to Replace 

Nested Decisions (continued)

Programming Logic & Design, Sixth Edition 13

Figure 6-6 Flowchart and pseudocode of efficient decision-making process 

using an array

Programming Logic & Design, Sixth Edition 14

Figure 6-7 Flowchart and pseudocode for Dependents Report program

Manipulating an Array to Replace 

Nested Decisions (continued)

Figure 6-7 Flowchart and pseudocode for Dependents 

Report program (continued)

Programming Logic & Design, Sixth Edition 15

Using Constants with Arrays

• Use constants in several ways

– To hold the size of an array

– As the array values

– As a subscript

Programming Logic & Design, Sixth Edition 16

Using a Constant as the Size of an 

Array

• Avoid ―magic numbers‖ (unnamed constants)

• Declare a named numeric constant to be used 

every time array is accessed

• Make sure any subscript remains less than the 

constant value

• Constant created automatically in many languages

Programming Logic & Design, Sixth Edition 17

Using Constants as Array Element 

Values

• Sometimes the values stored in arrays should be 

constants

• Example

string MONTH[12] = "January", 

"February", "March", "April", 

"May", "June", "July", "August", 

"September", "October“, "November", 

"December"

Programming Logic & Design, Sixth Edition 18



4

Using a Constant as an Array 

Subscript

• Use a numeric constant as a subscript to an array

• Example

– Declare a named constant as num INDIANA = 5

– Display value with:

output salesArray[INDIANA]

Programming Logic & Design, Sixth Edition 19

Searching an Array

• Sometimes must search through an array to find a 

value

• Example: mail-order business

– Item numbers are three-digit, non-consecutive numbers

– Customer orders an item, check if item number is valid

– Create an array that holds valid item numbers

– Search array for exact match

Programming Logic & Design, Sixth Edition 20

Programming Logic & Design, Sixth Edition 21

Figure 6-8 Flowchart and pseudocode for program that verifies item availability

Programming Logic & Design, Sixth Edition 22

Figure 6-8 Flowchart and pseudocode for program that verifies item availability 

(continued)

Programming Logic & Design, Sixth Edition 23

Figure 6-8 Flowchart and pseudocode for program that verifies item availability 

(continued)

Searching an Array (continued)

• Flag: variable that indicates whether an event 

occurred

• Technique for searching an array

– Set a subscript variable to 0 to start at the first element

– Initialize a flag variable to false to indicate the desired 

value has not been found

– Examine each element in the array

– If the value matches, set the flag to True

– If the value does not match, increment the subscript 

and examine the next array element

Programming Logic & Design, Sixth Edition 24



5

Using Parallel Arrays

• Example: mail-order business

– Two arrays, each with six elements

• Valid item numbers

• Valid item prices

– Each price in valid item price array in same position as 

corresponding item in valid item number array

• Parallel arrays

– Each element in one array associated with element in 

same relative position in other array

• Look through valid item array for customer item

– When match is found, get price from item price array

Programming Logic & Design, Sixth Edition 25 Programming Logic & Design, Sixth Edition 26

Figure 6-9 Parallel arrays in memory

Using Parallel Arrays

• Use parallel arrays

– Two or more arrays contain related data

– A subscript relates the arrays

• Elements at the same position in each array are logically 

related

Programming Logic & Design, Sixth Edition 27 Programming Logic & Design, Sixth Edition 28

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price 

using parallel arrays

Programming Logic & Design, Sixth Edition 29

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price 

using parallel arrays (continued)

Programming Logic & Design, Sixth Edition 30

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price 

using parallel arrays (continued)



6

Improving Search Efficiency

• Program should stop searching the array when a 

match is found 

• Setting a variable to a specific value instead of 

letting normal processing set it

• Improves efficiency

• The larger the array, the better the improvement by 

doing an early exit

Programming Logic & Design, Sixth Edition 31 Programming Logic & Design, Sixth Edition 32

Figure 6-11 Flowchart and pseudocode of the module that finds item price, 

exiting the loop as soon as it is found

Improving Search Efficiency 

(continued) 

Programming Logic & Design, Sixth Edition 33

Figure 6-11 Flowchart and pseudocode of the module that finds item price, 

exiting the loop as soon as it is found (continued)

Searching an Array for a Range Match

• Sometimes programmers want to work with ranges 

of values in arrays

• Example: mail-order business

– Read customer order data; determine discount 

based on quantity ordered

• First approach

– Array with as many elements as each possible order 

quantity

– Store appropriate discount for each possible order 

quantity

Programming Logic & Design, Sixth Edition 34

Searching an Array for a Range Match 

(continued)

Programming Logic & Design, Sixth Edition 35

Figure 6-13 Usable—but inefficient—discount array

Searching an Array for a Range Match 

(continued)

• Drawbacks of first approach

– Requires very large array; uses a lot of memory

– Stores same value repeatedly

– How do you know you have enough elements?

• Customer can always order more

• Better approach

– Create four discount array elements for each 

discount rate

– Parallel array with discount range

• Use loop to make comparisons

Programming Logic & Design, Sixth Edition 36



7

Searching an Array for a Range Match 

(continued)

Programming Logic & Design, Sixth Edition 37

Figure 6-14 Parallel arrays to use for determining discount

Programming Logic & Design, Sixth Edition 38

Figure 6-15 Program that determines discount rate

Remaining within Array Bounds

• Every array has finite size

– Number of elements in the array

– Number of bytes in the array

• Arrays composed of elements of same data type

• Elements of same data type occupy same number 

of bytes in memory

• Number of bytes in an array is always a multiple of 

number of array elements

• Access data using subscript containing a value that 

accesses memory occupied by the array

Programming Logic & Design, Sixth Edition 39 Programming Logic & Design, Sixth Edition 40

Figure 6-16 Determining the month string from user’s numeric entry

Remaining within Array Bounds 

(continued)

• Program logic assumes every number entered by 
the user is valid

• When invalid subscript is used:

– Some languages stop execution and issue an error

– Other languages access a memory location outside 
of the array

• Invalid array subscript is a logical error

• Out of bounds: using a subscript that is not within 
the acceptable range for the array

• Program should prevent bounds errors

Programming Logic & Design, Sixth Edition 41

Using a for Loop to Process Arrays

• for loop: single statement

– Initializes loop control variable

– Compares it to a limit

– Alters it

• for loop especially convenient when working with 

arrays

– To process every element

• Must stay within array bounds

• Highest usable subscript is one less than array size

Programming Logic & Design, Sixth Edition 42



8

Using a for Loop to Process Arrays 

(continued)

Programming Logic & Design, Sixth Edition 43

Figure 6-17 Pseudocode that uses a for loop to display an array of 

department names

Using a for Loop to Process Arrays 

(continued)

Programming Logic & Design, Sixth Edition 44

Figure 6-26 Pseudocode that uses a more efficient for loop to output month names

Summary

• Array: series or list of variables in memory

– Same name and type

– Different subscript

• Use a variable as a subscript to the array to replace 
multiple nested decisions

• Some array values determined during program 
execution

– Other arrays have hard-coded values

Programming Logic & Design, Sixth Edition 45

Summary (continued)

• Search an array

– Initialize the subscript

– Test each array element value in a loop

– Set a flag when a match is found

• Parallel arrays: each element in one array is 

associated with the element in second array

– Elements have same relative position

• For range comparisons, store either the low- or 

high-end value of each range

Programming Logic & Design, Sixth Edition 46

Summary (continued)

• Access data in an array

– Use subscript containing a value that accesses 

memory occupied by the array

• Subscript is out of bounds if not within defined 

range of acceptable subscripts

• for loop is a convenient tool for working with 

arrays

– Process each element of an array from beginning to 

end

Programming Logic & Design, Sixth Edition 47


