~% COURSE TECHNOLOGY

A~ CENGAGE Learning

l

Programming Logic and
Design
Sixth Edition

Chapter 6
Arrays

Objectives

In this chapter, you will learn about:

» Arrays and how they occupy computer memory

» Manipulating an array to replace nested decisions
« Using constants with arrays

« Searching an array

» Using parallel arrays

Programming Logic & Design, Sixth Edition

Objectives (continued)
« Searching an array for a range match

* Remaining within array bounds
* Using a for loop to process arrays

Programming Logic & Design, Sixth Edition

Understanding Arrays and How They
Occupy Computer Memory

e Array
— Series or list of variables in computer memory
— All variables share the same name
— Each variable has a different subscript
» Subscript (or index)
— Position number of an item in an array
— Subscripts are always a sequence of integers

Programming Logic & Design, Sixth Edition

How Arrays Occupy Computer
Memory

» Each item has same name and same data type

* Element: an item in the array

* Array elements are contiguous in memory

» Size of the array: number of elements it will hold

Programming Logic & Design, Sixth Edition

How Arrays Occupy Computer
Memory (continued)

someval s[1]
sonevals[0] l somevals[2]
|

=

AR

Figure 6-1 Appearance of a three-element array in computer
memory

Programming Logic & Design, Sixth Edition

How Arrays Occupy Computer
Memory (continued)

« All elements have same group name
— Individual elements have unique subscript
— Subscript indicates distance from first element
— Subscripts are a sequence of integers
» Subscripts placed in parentheses or brackets
following group name
— Syntax depends on programming language

Programming Logic & Design, Sixth Edition

Manipulating an Array to Replace
Nested Decisions

» Example: Human Resources Department

Dependents report

— List employees who have claimed zero through five

dependents
» Assume no employee has more than five dependents

» Application produces counts for dependent

categories

— Uses series of decisions
» Application does not scale up to more dependents

Programming Logic & Design, Sixth Edition

Figure 6-3 Flowchart and pseudocode of decision-making process using a
series of decisions—the hard way
Programming Logic & Design, Sixth Edition

Manipulating an Array to Replace
Nested Decisions (continued)

 Array reduces number of statements needed
» Six dependent count accumulators redefined as
single array
» Variable as a subscript to the array
» Array subscript variable must be:
— Numeric with no decimal places
— Initialized to 0
— Incremented by 1 each time the logic passes through
the loop

Programming Logic & Design, Sixth Edition 10

Figure 6-4 Flowchart and pseudocode of decision-making process—but
still the hard way

Programming Logic & Design, Sixth Edition

Figure 6-5 Flowchart and pseudocode of decision-making process using
an array—but still a hard way

Programming Logic & Design, Sixth Edition 12

Manipulating an Array to Replace
Nested Decisions (continued)

Significant declarations:
un dep
num count[6] - 0, 0, 0, 0, 0, 0

count[dep] =
count[dep] + 1

|

count[dep] = count[dep] + 1

Figure 6-6 Flowchart and pseudocode of efficient decision-making process
using an array

Programming Logic & Design, Sixth Edition 13

Figure 6-7 Flowchart and pseudocode for Dependents Report program

Programming Logic & Design, Sixth Edition 14

Manipulating an Array to Replace
Nested Decisions (continued)

Figure 6-7 Flowchart and pseudocode for Dependents
Report program (continued)
Programming Logic & Design, Sixth Edition 15

Using Constants with Arrays

» Use constants in several ways
— To hold the size of an array
— As the array values
— As a subscript

Programming Logic & Design, Sixth Edition 16

Using a Constant as the Size of an
Array

* Avoid “magic numbers” (unnamed constants)

» Declare a named numeric constant to be used
every time array is accessed

» Make sure any subscript remains less than the
constant value

» Constant created automatically in many languages

Programming Logic & Design, Sixth Edition 17

Using Constants as Array Element
Values

* Sometimes the values stored in arrays should be
constants

« Example
string MONTH[12] "January",
"February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November",
"December"

Programming Logic & Design, Sixth Edition 18

Using a Constant as an Array
Subscript
« Use a numeric constant as a subscript to an array
* Example

— Declare a named constant as num INDIANA
— Display value with:
output salesArray[INDIANA]

=5

Programming Logic & Design, Sixth Edition

Searching an Array

* Sometimes must search through an array to find a
value

» Example: mail-order business

— Item numbers are three-digit, non-consecutive numbers
— Customer orders an item, check if item number is valid
— Create an array that holds valid item numbers

— Search array for exact match

Programming Logic & Design, Sixth Edition

20

Figure 6-8 Flowchart and pseudocode for program that verifies item availability

Programming Logic & Design, Sixth Edition

21

Figure 6-8 Flowchart and pseudocode for program that verifies item availability
(continued)

Programming Logic & Design, Sixth Edition 22

Figure 6-8 Flowchart and pseudocode for program that verifies item availability
(continued)
Programming Logic & Design, Sixth Edition 23

Searching an Array (continued)

Flag: variable that indicates whether an event
occurred

Technique for searching an array

— Set a subscript variable to 0 to start at the first element

— Initialize a flag variable to false to indicate the desired
value has not been found

— Examine each element in the array

— If the value matches, set the flag to True

— If the value does not match, increment the subscript
and examine the next array element

Programming Logic & Design, Sixth Edition 24

Using Parallel Arrays

» Example: mail-order business
— Two arrays, each with six elements
+ Valid item numbers
« Valid item prices
— Each price in valid item price array in same position as
corresponding item in valid item number array
* Parallel arrays
— Each element in one array associated with element in
same relative position in other array
» Look through valid item array for customer item
— When match is found, get price from item price array

Programming Logic & Design, Sixth Edition 25

Ao e WIS yaaro es)
VALIO_TTEN[Q] ‘\‘*"" T [wan et/

() VALTD_RICELS)

ALIDLPRICELN) vaLID_PR

Figure 6-9 Parallel arrays in memory

Programming Logic & Design, Sixth Edition 26

Using Parallel Arrays

* Use parallel arrays
— Two or more arrays contain related data

— A subscript relates the arrays
» Elements at the same position in each array are logically
related

Programming Logic & Design, Sixth Edition 27

p—

[t S

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price
using parallel arrays

Programming Logic & Design, Sixth Edition 28

Rl el

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price
using parallel arrays (continued)
Programming Logic & Design, Sixth Edition 29

Figure 6-10 Flowchart and pseudocode of program that finds an item’s price

using parallel arrays (continued)
Programming Logic & Design, Sixth Edition 30

Improving Search Efficiency

* Program should stop searching the array when a
match is found

» Setting a variable to a specific value instead of
letting normal processing set it

» Improves efficiency

* The larger the array, the better the improvement by
doing an early exit

Programming Logic & Design, Sixth Edition 31

Figure 6-11 Flowchart and pseudocode of the module that finds item price,
exiting the loop as soon as it is found

Programming Logic & Design, Sixth Edition 32

Improving Search Efficiency
(continued)

Figure 6-11 Flowchart and pseudocode of the module that finds item price,
exiting the loop as soon as it is found (continued)

Programming Logic & Design, Sixth Edition 33

Searching an Array for a Range Match

* Sometimes programmers want to work with ranges
of values in arrays
« Example: mail-order business
— Read customer order data; determine discount
based on quantity ordered

* First approach

— Array with as many elements as each possible order
quantity

— Store appropriate discount for each possible order
quantity

Programming Logic & Design, Sixth Edition 34

Searching an Array for a Range Match
(continued)

numeric DISCOUNTL76]
-90,00 00,0
0.10, 0.10, 010,
0.15, 0.15, 0.1,
0.15, 0.15. 0.15,
0015, 015, 015,
0.20, 0.20, 0.20,
0,20, 020, 0.20,
0,20, 020, 0.0,
0.20, 0.20, 0.20,
0.20, 0.20, 0.20,
0.20, 0.20, 0.20,
0,20 0200 020,

SEaaRssass Sa8e
BEEREERERY bbBo
BRI

coo
Mk
288

0
0
0

28
888

Figure 6-13 Usable—but inefficient—discount array

Programming Logic & Design, Sixth Edition 35

Searching an Array for a Range Match
(continued)

» Drawbacks of first approach
— Requires very large array; uses a lot of memory
— Stores same value repeatedly
— How do you know you have enough elements?
« Customer can always order more
» Better approach

— Create four discount array elements for each
discount rate

— Parallel array with discount range
» Use loop to make comparisons

Programming Logic & Design, Sixth Edition 36

Searching an Array for a Range Match
(continued)

num DISCOUNT[4] = 0, 0.10, 0.15, 0.20
num QUAN_LIMIT[4] = 0, 9, 13, 26

Figure 6-14 Parallel arrays to use for determining discount

Programming Logic & Design, Sixth Edition 37

Figure 6-15 Program that determines discount rate

Programming Logic & Design, Sixth Edition 38

Remaining within Array Bounds

» Every array has finite size

— Number of elements in the array

— Number of bytes in the array

Arrays composed of elements of same data type

Elements of same data type occupy same number

of bytes in memory

Number of bytes in an array is always a multiple of

number of array elements

» Access data using subscript containing a value that
accesses memory occupied by the array

Programming Logic & Design, Sixth Edition 39

Figure 6-16 Determining the month string from user’s numeric entry

Programming Logic & Design, Sixth Edition 40

Remaining within Array Bounds
(continued)

» Program logic assumes every number entered by
the user is valid

* Wheninvalid subscript is used:
— Some languages stop execution and issue an error

— Other languages access a memory location outside
of the array

Invalid array subscript is a logical error

« Out of bounds: using a subscript that is not within
the acceptable range for the array

» Program should prevent bounds errors

Programming Logic & Design, Sixth Edition a1

Using a for Loop to Process Arrays

« for loop: single statement
— Initializes loop control variable
— Comparesit to a limit
— Alters it
« for loop especially convenient when working with
arrays
— To process every element
» Must stay within array bounds
« Highest usable subscript is one less than array size

Programming Logic & Design, Sixth Edition 42

Using a for Loop to Process Arrays
(continued)

atar

Figure 6-17 Pseudocode that uses a for loop to display an array of
department names

Programming Logic & Design, Sixth Edition 43

Using a for Loop to Process Arrays
(continued)

Figure 6-26 Pseudocode that uses a more efficient for loop to output month names

Programming Logic & Design, Sixth Edition 44

Summary

« Array: series or list of variables in memory
— Same name and type
— Different subscript

» Use a variable as a subscript to the array to replace
multiple nested decisions

* Some array values determined during program
execution
— Other arrays have hard-coded values

Programming Logic & Design, Sixth Edition 45

Summary (continued)

» Search an array
— Initialize the subscript
— Test each array element value in a loop
— Set a flag when a match is found

» Parallel arrays: each element in one array is
associated with the elementin second array
— Elements have same relative position

» For range comparisons, store either the low- or
high-end value of each range

Programming Logic & Design, Sixth Edition 46

Summary (continued)

» Access data in an array
— Use subscript containing a value that accesses
memory occupied by the array
« Subscriptis out of bounds if not within defined
range of acceptable subscripts
« for loop is a convenient tool for working with
arrays
— Process each element of an array from beginning to
end

Programming Logic & Design, Sixth Edition a7

