
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 11:

Structured Data

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.1

Abstract Data Types

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Abstract Data Types

A data type that specifies

values that can be stored

operations that can be done on the values

User of an abstract data type does not
need to know the implementation of the
data type, e.g., how the data is stored

ADTs are created by programmers

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Abstraction and Data Types

Abstraction: a definition that captures

general characteristics without details

Ex: An abstract triangle is a 3-sided polygon.

A specific triangle may be scalene, isosceles,

or equilateral

Data Type defines the values that can be

stored in a variable and the operations that

can be performed on it

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.2

Combining Data into Structures

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Combining Data into Structures

Structure: C++ construct that allows multiple

variables to be grouped together

General Format:

struct <structName>

{

 type1 field1;

 type2 field2;

 . . .

};

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example struct Declaration

struct Student

{

 int studentID;

 string name;

 short yearInSchool;

 double gpa;

};

structure tag

structure members

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

struct Declaration Notes

Must have ; after closing }

struct names commonly begin with

uppercase letter

Multiple fields of same type can be in

comma-separated list:

 string name,

 address;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Defining Variables

struct declaration does not allocate

memory or create variables

To define variables, use structure tag as

type name:

 Student bill;
studentID

name

yearInSchool

gpa

bill

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.3

Accessing Structure Members

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Structure Members

Use the dot (.) operator to refer to members of

struct variables:

 cin >> stu1.studentID;

 getline(cin, stu1.name);

 stu1.gpa = 3.75;

Member variables can be used in any manner

appropriate for their data type

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Displaying a struct Variable

To display the contents of a struct
variable, must display each field
separately, using the dot operator:
 cout << bill; // won’t work

 cout << bill.studentID << endl;

 cout << bill.name << endl;

 cout << bill.yearInSchool;

 cout << " " << bill.gpa;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing struct Variables

Cannot compare struct variables
directly:
 if (bill == william) // won’t work

Instead, must compare on a field basis:
if (bill.studentID ==

 william.studentID) ...

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.4

Initializing a Structure

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Initializing a Structure

struct variable can be initialized when

defined:
Student s = {11465, "Joan", 2, 3.75};

Can also be initialized member-by-
member after definition:
 s.name = "Joan";

 s.gpa = 3.75;

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

More on Initializing a Structure

May initialize only some members:
 Student bill = {14579};

Cannot skip over members:
 Student s = {1234, "John", ,

 2.83}; // illegal

Cannot initialize in the structure
declaration, since this does not allocate
memory

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Excerpts From Program 11-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.5

Arrays of Structures

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Arrays of Structures

Structures can be defined in arrays

Can be used in place of parallel arrays
const int NUM_STUDENTS = 20;

Student stuList[NUM_STUDENTS];

Individual structures accessible using subscript

notation

Fields within structures accessible using dot

notation:

cout << stuList[5].studentID;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.6

Nested Structures

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested Structures

 A structure can contain another structure as a
member:
 struct PersonInfo

 { string name,

 address,

 city;

 };

 struct Student

 { int studentID;

 PersonInfo pData;

 short yearInSchool;

 double gpa;

 };

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Members of Nested Structures

Use the dot operator multiple times to refer

to fields of nested structures:

 Student s;

 s.pData.name = "Joanne";

 s.pData.city = "Tulsa";

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.7

Structures as Function Arguments

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Structures as Function

Arguments

May pass members of struct variables to
functions:
 computeGPA(stu.gpa);

May pass entire struct variables to functions:
 showData(stu);

Can use reference parameter if function needs
to modify contents of structure variable

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Excerpts from Program 11-6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Structures as Function

Arguments - Notes
Using value parameter for structure can
slow down a program, waste space

Using a reference parameter will speed up
program, but function may change data in
structure

Using a const reference parameter
allows read-only access to reference
parameter, does not waste space, speed

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Revised showItem Function

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.8

Returning a Structure from a

Function

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Structure from a

Function
Function can return a struct:
Student getStudentData(); // prototype

stu1 = getStudentData(); // call

Function must define a local structure

for internal use

for use with return statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Structure from a

Function - Example

Student getStudentData()

{ Student tempStu;

 cin >> tempStu.studentID;

 getline(cin, tempStu.pData.name);

 getline(cin, tempStu.pData.address);

 getline(cin, tempStu.pData.city);

 cin >> tempStu.yearInSchool;

 cin >> tempStu.gpa;

 return tempStu;

}

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.9

Pointers to Structures

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers to Structures

A structure variable has an address

Pointers to structures are variables that
can hold the address of a structure:
Student *stuPtr;

Can use & operator to assign address:
stuPtr = & stu1;

Structure pointer can be a function
parameter

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Structure Members

via Pointer Variables
Must use () to dereference pointer

variable, not field within structure:

cout << (*stuPtr).studentID;

Can use structure pointer operator to
eliminate () and use clearer notation:

cout << stuPtr->studentID;

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

From Program 11-8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.11

Unions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Unions

Similar to a struct, but
all members share a single memory location, and

only one member of the union can be used at a time

Declared using union, otherwise the same as
struct

Variables defined as for struct variables

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Anonymous Union

A union without a union tag:
 union { ... };

Must use static if declared outside of a function

Allocates memory at declaration time

Can refer to members directly without dot operator

Uses only one memory location, saves space

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

11.12

Enumerated Data Types

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

An enumerated data type is a programmer-

defined data type. It consists of values

known as enumerators, which represent

integer constants.

8/23/2014

9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

Example:

enum Day { MONDAY, TUESDAY,

 WEDNESDAY, THURSDAY,

 FRIDAY };

The identifiers MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, and FRIDAY,
which are listed inside the braces, are
enumerators. They represent the values
that belong to the Day data type.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

 WEDNESDAY, THURSDAY,

 FRIDAY };

Note that the enumerators are not strings,

so they aren’t enclosed in quotes.

They are identifiers.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

Once you have created an enumerated

data type in your program, you can define

variables of that type. Example:

 Day workDay;

This statement defines workDay as a

variable of the Day type.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

We may assign any of the enumerators
MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, or FRIDAY to a variable of the

Day type. Example:

 workDay = WEDNESDAY;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

So, what is an enumerator?

Think of it as an integer named constant

Internally, the compiler assigns integer

values to the enumerators, beginning at 0.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

enum Day { MONDAY, TUESDAY,

 WEDNESDAY, THURSDAY,

 FRIDAY };

In memory...

MONDAY = 0

TUESDAY = 1

WEDNESDAY = 2

THURSDAY = 3

FRIDAY = 4

8/23/2014

10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

Using the Day declaration, the following

code...
cout << MONDAY << " "

 << WEDNESDAY << " “

 << FRIDAY << endl;

...will produce this output:

0 2 4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Assigning an integer to an enum

Variable

You cannot directly assign an integer value
to an enum variable. This will not work:

workDay = 3; // Error!

Instead, you must cast the integer:

workDay = static_cast<Day>(3);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Assigning an Enumerator to an int

Variable

You CAN assign an enumerator to an int

variable. For example:

int x;

x = THURSDAY;

This code assigns 3 to x.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing Enumerator Values

Enumerator values can be compared using
the relational operators. For example, using
the Day data type the following code will
display the message "Friday is greater than
Monday.“

if (FRIDAY > MONDAY)

{

 cout << "Friday is greater "

 << "than Monday.\n";
 }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Program 11-12 (Continued)

8/23/2014

11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerated Data Types

Program 11-12 shows enumerators used to

control a loop:

// Get the sales for each day.

for (index = MONDAY; index <= FRIDAY;

index++)

{

 cout << "Enter the sales for day "

 << index << ": ";

 cin >> sales[index];

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Anonymous Enumerated Types

An anonymous enumerated type is simply

one that does not have a name. For

example, in Program 11-13 we could have

declared the enumerated type as:

enum { MONDAY, TUESDAY,

 WEDNESDAY, THURSDAY,

 FRIDAY };

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Math Operators with enum

Variables

You can run into problems when trying to perform math
operations with enum variables. For example:

Day day1, day2; // Define two Day variables.

day1 = TUESDAY; // Assign TUESDAY to day1.

day2 = day1 + 1;// ERROR! Will not work!

The third statement will not work because the expression
day1 + 1 results in the integer value 2, and you cannot
store an int in an enum variable.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Math Operators with enum

Variables

You can fix this by using a cast to explicitly
convert the result to Day, as shown here:

// This will work.

day2 = static_cast<Day>(day1 + 1);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using an enum Variable to Step

through an Array's Elements

Because enumerators are stored in memory as
integers, you can use them as array subscripts.
For example:

enum Day { MONDAY, TUESDAY, WEDNESDAY,

 THURSDAY, FRIDAY };

const int NUM_DAYS = 5;

double sales[NUM_DAYS];

sales[MONDAY] = 1525.0;

sales[TUESDAY] = 1896.5;

sales[WEDNESDAY] = 1975.63;

sales[THURSDAY] = 1678.33;

sales[FRIDAY] = 1498.52;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using an enum Variable to Step

through an Array's Elements

Remember, though, you cannot use the ++
operator on an enum variable. So, the

following loop will NOT work.

Day workDay; // Define a Day variable

// ERROR!!! This code will NOT work.

for (workDay = MONDAY; workDay <= FRIDAY; workDay++)

{

 cout << "Enter the sales for day "

 << workDay << ": ";

 cin >> sales[workDay];

}

8/23/2014

12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using an enum Variable to Step

through an Array's Elements

You must rewrite the loop’s update
expression using a cast instead of ++:

for (workDay = MONDAY; workDay <= FRIDAY;

 workDay = static_cast<Day>(workDay + 1))

{

 cout << "Enter the sales for day "

 << workDay << ": ";

 cin >> sales[workDay];

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Enumerators Must Be Unique

Within the same Scope

Enumerators must be unique within the same

scope. (Unless strongly typed)

For example, an error will result if both of the

following enumerated types are declared

within the same scope:

enum Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum VicePresidents { ROOSEVELT, FAIRBANKS,

 SHERMAN };

ROOSEVELT is declared twice.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Strongly Typed enums in

C++ 11
In C++ 11, you can use a new type of enum , known as a

strongly typed enum

Allows you to have multiple enumerators in the same

scope with the same name

Prefix the enumerator with the name of the enum ,

followed by the :: operator:

Use a cast operator to retrieve integer value:

enum class Presidents { MCKINLEY, ROOSEVELT, TAFT };

enum class VicePresidents { ROOSEVELT, FAIRBANKS, SHERMAN };

Presidents prez = Presidents::ROOSEVELT;

VicePresidents vp = VicePresidents::ROOSEVELT;

int x = static_cast<int>(Presidents::ROOSEVELT);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Declaring the Type and Defining

the Variables in One Statement

You can declare an enumerated data type

and define one or more variables of the

type in the same statement. For example:

enum Car { PORSCHE, FERRARI, JAGUAR } sportsCar;

This code declares the Car data type and defines a

variable named sportsCar.

