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14.1

Instance and Static Members
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Instance and Static Members

@ instance variable: a member variable in a class.
Each object has its own copy.

© static variable: one variable shared among all
objects of a class

© static member function: can be used to
access static member variable; can be called
before any objects are defined
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static member variable

Contents of Tree.h

1 // Tree class Static member declared here

class Tree

3

4 private:

5 static int objectCount; // static member variable.
6 public:

7 // Constructor

8 Tree ()

9 { objectCount++; }

10

11 // Accessor function for objectCount

12 int getObjectCount() const

13 { return objectCount; } Static member defined here
14 )

15

16 // Definition of the static member variable, written
17 // outside the class.
18 int Tree::objectCount = 0;
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Program 14-1

// This program demonstrates a static member variable.
tinclude <iostream>

tinclude "Tree.h"

using namespace std;

int main()
{
// Define three Tree objects.
Tree oak;
Tree elm;
Tree pine;

// Display the mumber of Tree objects we have.

cout << "We have " << pine.getObjectCount ()
<< " trees in our program!\n";

return 0;

¥

Program Output
We have 3 trees in our programi
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Three Instances of the Tree Class, But Only
One objectCount Variable

objectCount variable
(static)

Instances of the Tree class
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static member function

© Declared with static before return type:
static int getObjectCount () const
{ return objectCount; }
@ Static member functions can only access static
member data
© Can be called independent of objects:

int num = Tree::getObjectCount () ;

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Modified Version of Tree.h
1 // Tree class

2 class Tree

34

4 private:
5 static int objectCount; // Static member variable.
6

7 nstructor

8 Tree ()

9 { objectCount++; }

10

11 / for objectCount

12 int geto Count () const

ount; |}

18 int Tree::objectCount = 0;

cout << "There are " << Tree::getObjectCount ()
<< " objects.\n";
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14.2

Friends of Classes
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Friends of Classes

© Friend: a function or class that is not a member
of a class, but has access to private members of
the class

© A friend function can be a stand-alone function
or a member function of another class

© It is declared a friend of a class with friend
keyword in the function prototype
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friend Function Declarations

© Stand-alone function:
friend void setAval (intValé&, int);
// declares setAVal function to be
// a friend of this class
©Member function of another class:
friend void SomeClass::setNum(int num)
// setNum function from SomeClass
// class is a friend of this class
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friend Class Declarations

© Class as a friend of a class:
class FriendClass
{

bi
class NewClass
{
public:
friend class FriendClass; // declares
// entire class FriendClass as a friend
// of this class

bi
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14.3

Memberwise Assignment
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Memberwise Assignment

@ Can use = to assign one object to another, or to
initialize an object with an object’s data

2 Copies member to member. e.g.,
instance?2 = instancel; means:
copy all member values from instancel and assign
to the corresponding member variables of
instance2

@ Use at initialization:
Rectangle r2 = rl;
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Program 14-5

s memberwise assignment.
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Program 14-5 (continued)

Program Output
boxl's width and length: 10 10
box2's width and length: 20 20

boxl's width and length: 10 10
box2's width and length: 10 10
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14.4

Copy Constructors
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Copy Constructors

& Special constructor used when a newly created
object is initialized to the data of another object
of same class

& Default copy constructor copies field-to-field

@ Default copy constructor works fine in many
cases
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Copy Constructors

Problem: what if object contains a pointer?
class SomeClass
{ public:

SomeClass (int val = 0)

{value=new int; *value = val;}
int getval();
void setvVal (int);
private:
int *value;
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Copy Constructors

What we get using memberwise copy with
objects containing dynamic memory:
SomeClass objectl (5);
SomeClass object2 = objectl;
object2.setVal(1l3);
cout << objectl.getvVal(); // also 13

objectl object2

valug \\\\Eé%%f
L
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Programmer-Defined
Copy Constructor

© Allows us to solve problem with objects
containing pointers:
SomeClass: :SomeClass (const SomeClass &obj)
{
value = new int;
*value = obj.value;
}
© Copy constructor takes a reference
parameter to an object of the class

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Programmer-Defined
Copy Constructor

© Each object now points to separate
dynamic memory:
SomeClass objectl (5);
SomeClass object2 = objectl;
object2.setVal (13);
cout << objectl.getval(); // still 5

objectl object2

valug valug
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Programmer-Defined
Copy Constructor

© Since copy constructor has a reference to
the object it is copying from,
SomeClass::SomeClass (SomeClass &obj)
it can modify that object.
©To prevent this from happening, make the
object parameter const:
SomeClass: :SomeClass
(const SomeClass &obj)
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C of .h (Version 2)
tifndef STUDENTTESTSCORES_H
tdefine STUDENTTESTSCORES_H
#include <string>
using namespace std;

const double DEFAULT_SCORE = 0.0;

class StudentTestScores

{

private:
string studentName; // The student's name
double *testScores; // Points to array of test scores
int numTestScores; // Number of test scores

// Private member function to create an
// array of test scores.
void createTestScoreshrray(int size)
{ numTestScores = size;
testScores = double(size);
for (int 1 = 0; 1 < size; 1++)
testscores(1] = DEFAULT_SCORE; }

public:
// Constructor
StudentTestScores(string name, int numscores)
{ studentName = name;
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createTestScoresArray(numscores); }

// Copy constructor
StudentTestSco:

3.
ouble [ nunTestscores];
for (int 1 = 0; 1 < nunTestScores; i++)

testscores(1] = obj.testScores[i]; }

// Destructor
-StudentTestscores()
{ delete [] testScores; }

// The setTestScore function sets a specific
// test score's value.

void setTestScore(double score, int index)

{ testscores[index] = score; }

// set the s
void setStud
{ studentName

dent's name.
me(string name)

name; )

// Get the student name.
string getStudentName() const
{ return studentName; )
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/7 Get the number of test scores.
int getNumTestScores() const
{ return numTestScores; }

// Get a specific test score.
double getTestScore(int index) const

{ return testscores[index]; )

b
#endif
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14.5

Operator Overloading
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Operator Overloading

© Operators such as =, +, and others can be redefined when
used with objects of a class
© The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,
operator+ to overload the + operator, and
operator= to overload the = operator
© Prototype for the overloaded operator goes in the
declaration of the class that is overloading it
© Overloaded operator function definition goes with other
member functions
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Operator Overloading

@ Prototype:
void operator=(const SomeClass &rval)

© Operator is called via object on left side
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Invoking an Overloaded
Operator

@ Operator can be invoked as a member
function:
objectl.operator=(object2);
@1t can also be used in more conventional
manner:
objectl = object2;
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Returning a Value

» Overloaded operator can return a value
class Point2d
{
public:
double operator-(const point2d &right)
{ return sqgrt (pow((x-right.x),2)
+ pow((y-right.y),2)); }

private:
int %, y;
}i
Point2d pointl(2,2), point2(4,4);
// Compute and display distance between 2 points.
cout << point2 — pointl << endl; // displays 2.82843
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Returning a Value

2 Return type the same as the left operand
supports notation like:
objectl = object2 = object3;
2 Function declared as follows:

const SomeClass operator=(const someClass &rval)

2 In function, include as last statement:

return *this;

L
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The this Pointer

» this: predefined pointer available to a
class’s member functions

= Always points to the instance (object) of
the class whose function is being called
¢Is passed as a hidden argument to all non-
static member functions

»Can be used to access members that may
be hidden by parameters with same name

‘Addison Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

this Pointer Example

class SomeClass
{
private:
int num;
public:
void setNum(int num)

{ this->num = num; }

L
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Notes on
Overloaded Operators

»Can change meaning of an operator

= Cannot change the number of operands of
the operator

2 Only certain operators can be overloaded.
Cannot overload the following operators:

?: . X :: sizeof
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Overloading Types of Operators

s ++, —— operators overloaded differently for
prefix vs. postfix notation

% Overloaded relational operators should
return a bool value

»Overloaded stream operators >>, << must
return reference to istream, ostream
objects and take istream, ostream
objects as parameters
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Overloaded [] Operator

2 Can create classes that behave like arrays,
provide bounds-checking on subscripts

% Must consider constructor, destructor

2 Overloaded [] returns a reference to
object, not an object itself
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Cis

14.6

Object Conversion

s of
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Object Conversion

» Type of an object can be converted to another type
» Automatically done for built-in data types
» Must write an operator function to perform conversion
» To convertan FeetInches objectto an int:
FeetInches: :operator int()
{return feet;}
» Assuming distance is a FeetInches object, allows
statements like:
int d = distance;
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Cis

14.7

Aggregation
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Aggregation

@ Agaregation: a class is a member of a
class

% Supports the modeling of ‘has a’
relationship between classes — enclosing
class ‘has a’ enclosed class

% Same notation as for structures within
structures
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Aggregation

class StudentInfo
{
private:
string firstName, LastName;
string address, city, state, zip;

}i
class Student
{
private:
StudentInfo personalData;
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See the Instructor, TextBook,
and Course classes in Chapter 14,
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