
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 14:

More About

Classes

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.1

Instance and Static Members

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Instance and Static Members

instance variable: a member variable in a class.
Each object has its own copy.

static variable: one variable shared among all
objects of a class

static member function: can be used to
access static member variable; can be called
before any objects are defined

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

static member variable

Contents of Tree.h

 1 // Tree class

 2 class Tree

 3 {

 4 private:

 5 static int objectCount; // Static member variable.

 6 public:

 7 // Constructor

 8 Tree()

 9 { objectCount++; }

10

11 // Accessor function for objectCount

12 int getObjectCount() const

13 { return objectCount; }

14 };

15

16 // Definition of the static member variable, written

17 // outside the class.

18 int Tree::objectCount = 0;

Static member declared here.

Static member defined here.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Three Instances of the Tree Class, But Only
One objectCount Variable

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

static member function

Declared with static before return type:

 static int getObjectCount() const

 { return objectCount; }

Static member functions can only access static
member data

Can be called independent of objects:

int num = Tree::getObjectCount();

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Modified Version of Tree.h

 1 // Tree class

 2 class Tree

 3 {

 4 private:

 5 static int objectCount; // Static member variable.

 6 public:

 7 // Constructor

 8 Tree()

 9 { objectCount++; }

10

11 // Accessor function for objectCount

12 static int getObjectCount() const

13 { return objectCount; }

14 };

15

16 // Definition of the static member variable, written

17 // outside the class.

18 int Tree::objectCount = 0;

Now we can call the function like this:
cout << "There are " << Tree::getObjectCount()

 << " objects.\n";

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.2

Friends of Classes

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Friends of Classes

Friend: a function or class that is not a member
of a class, but has access to private members of
the class

A friend function can be a stand-alone function
or a member function of another class

It is declared a friend of a class with friend
keyword in the function prototype

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

 friend Function Declarations

Stand-alone function:
friend void setAVal(intVal&, int);

// declares setAVal function to be

// a friend of this class

Member function of another class:
friend void SomeClass::setNum(int num)

// setNum function from SomeClass

// class is a friend of this class

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

 friend Class Declarations

Class as a friend of a class:
class FriendClass

{

 ...

};

class NewClass

{

 public:

 friend class FriendClass; // declares

 // entire class FriendClass as a friend

 // of this class

 …
};

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.3

Memberwise Assignment

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Memberwise Assignment

Can use = to assign one object to another, or to

initialize an object with an object’s data

Copies member to member. e.g.,

 instance2 = instance1; means:

 copy all member values from instance1 and assign

to the corresponding member variables of
instance2

Use at initialization:

 Rectangle r2 = r1;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.4

Copy Constructors

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copy Constructors

Special constructor used when a newly created
object is initialized to the data of another object
of same class

Default copy constructor copies field-to-field

Default copy constructor works fine in many
cases

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copy Constructors

 Problem: what if object contains a pointer?
 class SomeClass

 { public:

 SomeClass(int val = 0)

 {value=new int; *value = val;}

 int getVal();

 void setVal(int);

 private:

 int *value;

 }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copy Constructors

 What we get using memberwise copy with
objects containing dynamic memory:

SomeClass object1(5);

SomeClass object2 = object1;

object2.setVal(13);

cout << object1.getVal(); // also 13

object1 object2

value value

13

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Programmer-Defined

Copy Constructor

Allows us to solve problem with objects
containing pointers:
 SomeClass::SomeClass(const SomeClass &obj)

 {

 value = new int;

 *value = obj.value;

 }

Copy constructor takes a reference
parameter to an object of the class

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Programmer-Defined

Copy Constructor
Each object now points to separate
dynamic memory:

SomeClass object1(5);

SomeClass object2 = object1;

object2.setVal(13);

cout << object1.getVal(); // still 5

object1 object2

value value

13 5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Programmer-Defined

Copy Constructor

Since copy constructor has a reference to
the object it is copying from,
 SomeClass::SomeClass(SomeClass &obj)

 it can modify that object.

To prevent this from happening, make the
object parameter const:
 SomeClass::SomeClass

 (const SomeClass &obj)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.5

Operator Overloading

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Operator Overloading

Operators such as =, +, and others can be redefined when
used with objects of a class

The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,
 operator+ to overload the + operator, and

 operator= to overload the = operator

Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

Overloaded operator function definition goes with other
member functions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Operator Overloading

Prototype:

 void operator=(const SomeClass &rval)

Operator is called via object on left side

return

type

function

name

parameter for

object on right

side of operator

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Invoking an Overloaded

Operator

Operator can be invoked as a member

function:

 object1.operator=(object2);

It can also be used in more conventional

manner:

 object1 = object2;

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Value

Overloaded operator can return a value
class Point2d

{

 public:

 double operator-(const point2d &right)

 { return sqrt(pow((x-right.x),2)

 + pow((y-right.y),2)); }

...

 private:

 int x, y;

};

Point2d point1(2,2), point2(4,4);

// Compute and display distance between 2 points.

cout << point2 – point1 << endl; // displays 2.82843

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Value

Return type the same as the left operand

supports notation like:

 object1 = object2 = object3;

Function declared as follows:
const SomeClass operator=(const someClass &rval)

In function, include as last statement:

 return *this;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The this Pointer

this: predefined pointer available to a
class’s member functions

Always points to the instance (object) of
the class whose function is being called

Is passed as a hidden argument to all non-
static member functions

Can be used to access members that may
be hidden by parameters with same name

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

this Pointer Example

class SomeClass

{

 private:

 int num;

 public:

 void setNum(int num)

 { this->num = num; }

 ...

};

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Notes on

Overloaded Operators
Can change meaning of an operator

Cannot change the number of operands of

the operator

Only certain operators can be overloaded.

Cannot overload the following operators:

 ?: . .* :: sizeof

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Overloading Types of Operators

++, -- operators overloaded differently for
prefix vs. postfix notation

Overloaded relational operators should
return a bool value

Overloaded stream operators >>, << must
return reference to istream, ostream
objects and take istream, ostream
objects as parameters

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Overloaded [] Operator

Can create classes that behave like arrays,

provide bounds-checking on subscripts

Must consider constructor, destructor

Overloaded [] returns a reference to

object, not an object itself

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.6

Object Conversion

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Object Conversion

Type of an object can be converted to another type

Automatically done for built-in data types

Must write an operator function to perform conversion

To convert an FeetInches object to an int:
 FeetInches::operator int()

{return feet;}

Assuming distance is a FeetInches object, allows
statements like:
 int d = distance;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.7

Aggregation

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Aggregation

Aggregation: a class is a member of a

class

Supports the modeling of ‘has a’

relationship between classes – enclosing

class ‘has a’ enclosed class

Same notation as for structures within

structures

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Aggregation

class StudentInfo

{

 private:

 string firstName, LastName;

 string address, city, state, zip;

 ...

};

class Student

{

 private:

 StudentInfo personalData;

 ...

};

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

See the Instructor, TextBook,

and Course classes in Chapter 14.

