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Chapter 14: 

More About 

Classes 
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14.1 

Instance and Static Members 
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Instance and Static Members 

instance variable: a member variable in a class.  
Each object has its own copy. 
 

static variable: one variable shared among all 
objects of a class 
 

static member function: can be used to 
access static member variable; can be called 
before any objects are defined 
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static member variable 

Contents of Tree.h 

 1  // Tree class 

 2  class Tree 

 3  { 

 4  private: 

 5     static int objectCount;    // Static member variable. 

 6  public: 

 7     // Constructor 

 8     Tree() 

 9        { objectCount++; } 

10     

11     // Accessor function for objectCount 

12     int getObjectCount() const 

13        { return objectCount; } 

14  }; 

15  

16  // Definition of the static member variable, written 

17  // outside the class. 

18  int Tree::objectCount = 0; 

Static member declared here. 

Static member defined here. 
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Three Instances of the Tree Class, But Only 
One objectCount Variable 
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static member function 

Declared with static before return type: 

 static int getObjectCount() const 

 { return objectCount; } 

Static member functions can only access static 
member data 

Can be called independent of objects: 
 
int num = Tree::getObjectCount(); 
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Modified Version of Tree.h 

 1  // Tree class 

 2  class Tree 

 3  { 

 4  private: 

 5     static int objectCount;    // Static member variable. 

 6  public: 

 7     // Constructor 

 8     Tree() 

 9        { objectCount++; } 

10     

11     // Accessor function for objectCount 

12     static int getObjectCount() const 

13        { return objectCount; } 

14  }; 

15  

16  // Definition of the static member variable, written 

17  // outside the class. 

18  int Tree::objectCount = 0; 

Now we can call the function like this: 
cout << "There are " << Tree::getObjectCount() 

     << " objects.\n"; 
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14.2 

Friends of Classes 
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Friends of Classes 

Friend: a function or class that is not a member 
of a class, but has access to private members of 
the class 

A friend function can be a stand-alone function 
or a member function of another class 

It is declared a friend of a class with friend 
keyword in the function prototype 
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 friend Function Declarations 

Stand-alone function: 
friend void setAVal(intVal&, int); 

// declares setAVal function to be 

// a friend of this class 

Member function of another class: 
friend void SomeClass::setNum(int num) 

// setNum function from SomeClass  

// class is a friend of this class 
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 friend Class Declarations 

Class as a friend of a class: 
class FriendClass 

{ 

 ... 

}; 

class NewClass 

{ 

 public: 

   friend class FriendClass; // declares 

 // entire class FriendClass as a friend 

 // of this class 

 … 
}; 
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14.3 

Memberwise Assignment 
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Memberwise Assignment 

Can use = to assign one object to another, or to 

initialize an object with an object’s data 

Copies member to member.  e.g., 

 instance2 = instance1;  means:  

 copy all member values from instance1 and assign 

to the corresponding member variables of 
instance2 

Use at initialization: 

 Rectangle r2 = r1; 

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. 

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved. 

14.4 

Copy Constructors 
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Copy Constructors 

Special constructor used when a newly created 
object is initialized to the data of another object 
of same class 
 

Default copy constructor copies field-to-field 
 

Default copy constructor works fine in many 
cases 
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Copy Constructors 

 Problem: what if object contains a pointer? 
 class SomeClass 

 { public: 

    SomeClass(int val = 0) 

   {value=new int; *value = val;}  

    int getVal(); 

    void setVal(int); 

   private: 

    int *value; 

 } 
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Copy Constructors 

 What we get using memberwise copy with 
objects containing dynamic memory: 

SomeClass object1(5); 

SomeClass object2 = object1; 

object2.setVal(13); 

cout << object1.getVal(); // also 13 

   

object1 object2 

value value 

13 
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Programmer-Defined  

Copy Constructor 

Allows us to solve problem with objects 
containing pointers: 
 SomeClass::SomeClass(const SomeClass &obj) 

 { 

    value = new int; 

    *value = obj.value; 

 } 

Copy constructor takes a reference 
parameter to an object of the class 
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Programmer-Defined  

Copy Constructor 
Each object now points to separate 
dynamic memory: 

SomeClass object1(5); 

SomeClass object2 = object1; 

object2.setVal(13); 

cout << object1.getVal(); // still 5 

 

object1 object2 

value value 

13 5 
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Programmer-Defined  

Copy Constructor 

Since copy constructor has a reference to 
the object it is copying from, 
 SomeClass::SomeClass(SomeClass &obj) 

 it can modify that object.  

To prevent this from happening, make the 
object parameter const: 
 SomeClass::SomeClass 

     (const SomeClass &obj) 
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14.5 

Operator Overloading 
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Operator Overloading 

Operators such as =, +, and others can be redefined when 
used with objects of a class 

The name of the function for the overloaded operator is 
operator followed by the operator symbol, e.g., 
 operator+ to overload the + operator, and 

 operator= to overload the = operator 

Prototype for the overloaded operator goes in the 
declaration of the class that is overloading it 

Overloaded operator function definition goes with other 
member functions 
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Operator Overloading 

Prototype: 

  void operator=(const SomeClass &rval) 

 

 

 

 

 

 

Operator is called via object on left side 

return 

type 

function 

name 

parameter for 

object on right 

side of operator 
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Invoking an Overloaded 

Operator 

Operator can be invoked as a member 

function: 

 object1.operator=(object2); 

It can also be used in more conventional 

manner: 

 object1 = object2; 
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Returning a Value 

Overloaded operator can return a value 
class Point2d 

{ 

 public: 

   double operator-(const point2d &right) 

   { return sqrt(pow((x-right.x),2) 

     + pow((y-right.y),2)); } 

... 

 private: 

   int x, y; 

}; 

Point2d point1(2,2), point2(4,4); 

// Compute and display distance between 2 points. 

cout << point2 – point1 << endl; // displays 2.82843 
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Returning a Value 

Return type the same as the left operand 

supports notation like: 

 object1 = object2 = object3; 

Function declared as follows: 
const SomeClass operator=(const someClass &rval) 

In function, include as last statement: 

  return *this; 
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The this Pointer 

this: predefined pointer available to a 
class’s member functions 

Always points to the instance (object) of 
the class whose function is being called 

Is passed as a hidden argument to all non-
static member functions 

Can be used to access members that may 
be hidden by parameters with same name 
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this Pointer Example 

class SomeClass 

{ 

  private: 

   int num; 

  public: 

   void setNum(int num) 

   { this->num = num; } 

   ... 

}; 
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Notes on  

Overloaded Operators 
Can change meaning of an operator 

Cannot change the number of operands of 

the operator 

Only certain operators can be overloaded.  

Cannot overload the following operators: 

 ?:  .  .*  :: sizeof 
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Overloading Types of Operators 

++, -- operators overloaded differently for 
prefix vs. postfix notation 

Overloaded relational operators should 
return a bool value 

Overloaded stream operators >>, << must 
return reference to istream, ostream 
objects and take istream, ostream 
objects as parameters 
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Overloaded [] Operator 

Can create classes that behave like arrays, 

provide bounds-checking on subscripts 

Must consider constructor, destructor 

Overloaded [] returns a reference to 

object, not an object itself 
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14.6 

Object Conversion 
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Object Conversion 

Type of an object can be converted to another type 

Automatically done for built-in data types 

Must write an operator function to perform conversion 

To convert an FeetInches object to an int: 
 FeetInches::operator int()  

{return feet;} 

Assuming distance is a FeetInches object, allows 
statements like: 
 int d = distance; 
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14.7 

Aggregation 
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Aggregation 

Aggregation: a class is a member of a 

class 

Supports the modeling of ‘has a’ 

relationship between classes – enclosing 

class ‘has a’ enclosed class 

Same notation as for structures within 

structures 
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Aggregation 

class StudentInfo  

{ 

  private: 

   string firstName, LastName; 

   string address, city, state, zip; 

 ... 

}; 

class Student 

{ 

  private: 

   StudentInfo personalData; 

 ... 

}; 
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See the Instructor, TextBook, 

and Course classes in Chapter 14. 


