8/23/2014

e

From Control Structures

Chapter 14: through Objects

More About
Classes

y’

il
TONY GADDIS

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

14.1

Instance and Static Members

fnl
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

Instance and Static Members

@ instance variable: a member variable in a class.
Each object has its own copy.

© static variable: one variable shared among all
objects of a class

© static member function: can be used to
access static member variable; can be called
before any objects are defined

‘Addisan-Wesloy
s intol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

static member variable

Contents of Tree.h

1 // Tree class Static member declared here

class Tree

3

4 private:

5 static int objectCount; // static member variable.
6 public:

7 // Constructor

8 Tree ()

9 { objectCount++; }

10

11 // Accessor function for objectCount

12 int getObjectCount() const

13 { return objectCount; } Static member defined here
14)

15

16 // Definition of the static member variable, written
17 // outside the class.
18 int Tree::objectCount = 0;

Addsan Wesly

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Program 14-1

// This program demonstrates a static member variable.
tinclude <iostream>

tinclude "Tree.h"

using namespace std;

int main()
{
// Define three Tree objects.
Tree oak;
Tree elm;
Tree pine;

// Display the mumber of Tree objects we have.

cout << "We have " << pine.getObjectCount ()
<< " trees in our program!\n";

return 0;

¥

Program Output
We have 3 trees in our programi

Addison-Wesley
senirpintal

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Three Instances of the Tree Class, But Only
One objectCount Variable

objectCount variable
(static)

Instances of the Tree class

Addisan-Weslsy
senirpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

8/23/2014

static member function

© Declared with static before return type:
static int getObjectCount () const
{ return objectCount; }
@ Static member functions can only access static
member data
© Can be called independent of objects:

int num = Tree::getObjectCount () ;

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Modified Version of Tree.h
1 // Tree class

2 class Tree

34

4 private:
5 static int objectCount; // Static member variable.
6

7 nstructor

8 Tree ()

9 { objectCount++; }

10

11 / for objectCount

12 int geto Count () const

ount; |}

18 int Tree::objectCount = 0;

cout << "There are " << Tree::getObjectCount ()
<< " objects.\n";

Addisar

n-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

14.2

Friends of Classes

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Friends of Classes

© Friend: a function or class that is not a member
of a class, but has access to private members of
the class

© A friend function can be a stand-alone function
or a member function of another class

© It is declared a friend of a class with friend
keyword in the function prototype

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

friend Function Declarations

© Stand-alone function:
friend void setAval (intValé&, int);
// declares setAVal function to be
// a friend of this class
©Member function of another class:
friend void SomeClass::setNum(int num)
// setNum function from SomeClass
// class is a friend of this class

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

friend Class Declarations

© Class as a friend of a class:
class FriendClass
{

bi
class NewClass
{
public:
friend class FriendClass; // declares
// entire class FriendClass as a friend
// of this class

bi

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Cix..

14.3

Memberwise Assignment

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Memberwise Assignment

@ Can use = to assign one object to another, or to
initialize an object with an object’s data

2 Copies member to member. e.g.,
instance?2 = instancel; means:
copy all member values from instancel and assign
to the corresponding member variables of
instance2

@ Use at initialization:
Rectangle r2 = rl;

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Program 14-5

s memberwise assignment.

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Program 14-5 (continued)

Program Output
boxl's width and length: 10 10
box2's width and length: 20 20

boxl's width and length: 10 10
box2's width and length: 10 10

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

14.4

Copy Constructors

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Copy Constructors

& Special constructor used when a newly created
object is initialized to the data of another object
of same class

& Default copy constructor copies field-to-field

@ Default copy constructor works fine in many
cases

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Copy Constructors

Problem: what if object contains a pointer?
class SomeClass
{ public:

SomeClass (int val = 0)

{value=new int; *value = val;}
int getval();
void setvVal (int);
private:
int *value;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Copy Constructors

What we get using memberwise copy with
objects containing dynamic memory:
SomeClass objectl (5);
SomeClass object2 = objectl;
object2.setVal(1l3);
cout << objectl.getvVal(); // also 13

objectl object2

valug \\\\Eé%%f
L

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley Al rights reserved.

‘Addison-Wesloy
se of

Programmer-Defined
Copy Constructor

© Allows us to solve problem with objects
containing pointers:
SomeClass: :SomeClass (const SomeClass &obj)
{
value = new int;
*value = obj.value;
}
© Copy constructor takes a reference
parameter to an object of the class

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Programmer-Defined
Copy Constructor

© Each object now points to separate
dynamic memory:
SomeClass objectl (5);
SomeClass object2 = objectl;
object2.setVal (13);
cout << objectl.getval(); // still 5

objectl object2

valug valug

Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley Al rights reserved.

Programmer-Defined
Copy Constructor

© Since copy constructor has a reference to
the object it is copying from,
SomeClass::SomeClass (SomeClass &obj)
it can modify that object.
©To prevent this from happening, make the
object parameter const:
SomeClass: :SomeClass
(const SomeClass &obj)

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

C of .h (Version 2)
tifndef STUDENTTESTSCORES_H
tdefine STUDENTTESTSCORES_H
#include <string>
using namespace std;

const double DEFAULT_SCORE = 0.0;

class StudentTestScores

{

private:
string studentName; // The student's name
double *testScores; // Points to array of test scores
int numTestScores; // Number of test scores

// Private member function to create an
// array of test scores.
void createTestScoreshrray(int size)
{ numTestScores = size;
testScores = double(size);
for (int 1 = 0; 1 < size; 1++)
testscores(1] = DEFAULT_SCORE; }

public:
// Constructor
StudentTestScores(string name, int numscores)
{ studentName = name;

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

createTestScoresArray(numscores); }

// Copy constructor
StudentTestSco:

3.
ouble [nunTestscores];
for (int 1 = 0; 1 < nunTestScores; i++)

testscores(1] = obj.testScores[i]; }

// Destructor
-StudentTestscores()
{ delete [] testScores; }

// The setTestScore function sets a specific
// test score's value.

void setTestScore(double score, int index)

{ testscores[index] = score; }

// set the s
void setStud
{ studentName

dent's name.
me(string name)

name;)

// Get the student name.
string getStudentName() const
{ return studentName;)

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

/7 Get the number of test scores.
int getNumTestScores() const
{ return numTestScores; }

// Get a specific test score.
double getTestScore(int index) const

{ return testscores[index];)

b
#endif

‘Addisan-Wesloy
senimpintof

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

14.5

Operator Overloading

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Operator Overloading

© Operators such as =, +, and others can be redefined when
used with objects of a class
© The name of the function for the overloaded operator is
operator followed by the operator symbol, e.g.,
operator+ to overload the + operator, and
operator= to overload the = operator
© Prototype for the overloaded operator goes in the
declaration of the class that is overloading it
© Overloaded operator function definition goes with other
member functions

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley Al rights reserved.

Operator Overloading

@ Prototype:
void operator=(const SomeClass &rval)

© Operator is called via object on left side

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Invoking an Overloaded
Operator

@ Operator can be invoked as a member
function:
objectl.operator=(object2);
@1t can also be used in more conventional
manner:
objectl = object2;

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Returning a Value

» Overloaded operator can return a value
class Point2d
{
public:
double operator-(const point2d &right)
{ return sqgrt (pow((x-right.x),2)
+ pow((y-right.y),2)); }

private:
int %, y;
}i
Point2d pointl(2,2), point2(4,4);
// Compute and display distance between 2 points.
cout << point2 — pointl << endl; // displays 2.82843

‘Addison Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Returning a Value

2 Return type the same as the left operand
supports notation like:
objectl = object2 = object3;
2 Function declared as follows:

const SomeClass operator=(const someClass &rval)

2 In function, include as last statement:

return *this;

L
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The this Pointer

» this: predefined pointer available to a
class’s member functions

= Always points to the instance (object) of
the class whose function is being called
¢Is passed as a hidden argument to all non-
static member functions

»Can be used to access members that may
be hidden by parameters with same name

‘Addison Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

this Pointer Example

class SomeClass
{
private:
int num;
public:
void setNum(int num)

{ this->num = num; }

L
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Notes on
Overloaded Operators

»Can change meaning of an operator

= Cannot change the number of operands of
the operator

2 Only certain operators can be overloaded.
Cannot overload the following operators:

?: . X :: sizeof

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Overloading Types of Operators

s ++, —— operators overloaded differently for
prefix vs. postfix notation

% Overloaded relational operators should
return a bool value

»Overloaded stream operators >>, << must
return reference to istream, ostream
objects and take istream, ostream
objects as parameters

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Overloaded [] Operator

2 Can create classes that behave like arrays,
provide bounds-checking on subscripts

% Must consider constructor, destructor

2 Overloaded [] returns a reference to
object, not an object itself

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Cis

14.6

Object Conversion

s of
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Object Conversion

» Type of an object can be converted to another type
» Automatically done for built-in data types
» Must write an operator function to perform conversion
» To convertan FeetInches objectto an int:
FeetInches: :operator int()
{return feet;}
» Assuming distance is a FeetInches object, allows
statements like:
int d = distance;

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Cis

14.7

Aggregation

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Aggregation

@ Agaregation: a class is a member of a
class

% Supports the modeling of ‘has a’
relationship between classes — enclosing
class ‘has a’ enclosed class

% Same notation as for structures within
structures

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Aggregation

class StudentInfo
{
private:
string firstName, LastName;
string address, city, state, zip;

}i
class Student
{
private:
StudentInfo personalData;

‘Addison Wsley
seninfpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

See the Instructor, TextBook,
and Course classes in Chapter 14,

‘Addison Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

