
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 4:

Making Decisions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.1

Relational Operators

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Relational Operators

Used to compare numbers to determine

relative order

Operators:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Relational Expressions

Boolean expressions – true or false

Examples:

 12 > 5 is true

 7 <= 5 is false

 if x is 10, then

 x == 10 is true,

 x != 8 is true, and

 x == 8 is false

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Relational Expressions

Can be assigned to a variable:

 result = x <= y;

Assigns 0 for false, 1 for true

Do not confuse = and ==

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.2

The if Statement

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if Statement

Allows statements to be conditionally

executed or skipped over

Models the way we mentally evaluate

situations:

"If it is raining, take an umbrella."

"If it is cold outside, wear a coat."

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Evaluating a Decision

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Evaluating a Decision

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if Statement

General Format:

 if (expression)

 statement;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if Statement-What Happens

To evaluate:

if (expression)

 statement;

If the expression is true, then

statement is executed.

If the expression is false, then

statement is skipped.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

if Statement in Program 4-2

Continued…

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

if Statement in Program 4-2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Program 4-2 Lines 21

and 22

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

if Statement Notes

Do not place ; after (expression)

Place statement; on a separate line
after (expression), indented:

 if (score > 90)

 grade = 'A';

Be careful testing floats and doubles
for equality

0 is false; any other value is true

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.3

Expanding the if Statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Expanding the if Statement

To execute more than one statement as part of
an if statement, enclose them in { }:

 if (score > 90)

 {

 grade = 'A';

 cout << "Good Job!\n";

 }

 { } creates a block of code

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.4

The if/else Statement

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if/else statement

Provides two possible paths of execution

Performs one statement or block if the
expression is true, otherwise performs

another statement or block.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if/else statement

General Format:

 if (expression)

 statement1; // or block

 else

 statement2; // or block

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

if/else-What Happens

To evaluate:
 if (expression)

 statement1;

 else

 statement2;

If the expression is true, then statement1 is
executed and statement2 is skipped.

If the expression is false, then statement1 is
skipped and statement2 is executed.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if/else statement and

Modulus Operator in Program 4-8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Program 4-8 Lines 14

through 18

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Testing the Divisor in Program 4-9

Continued…

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Testing the Divisor in Program 4-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.5

Nested if Statements

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested if Statements

An if statement that is nested inside

another if statement

Nested if statements can be used to test

more than one condition

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for a Nested if

Statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested if Statements

From Program 4-10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested if Statements

Another example, from Program 4-1

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Use Proper Indentation!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.6

The if/else if Statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if/else if Statement

Tests a series of conditions until one is
found to be true

Often simpler than using nested if/else
statements

Can be used to model thought processes
such as:

"If it is raining, take an umbrella,
else, if it is windy, take a hat,
else, take sunglasses”

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

if/else if Format

if (expression)

 statement1; // or block

else if (expression)

 statement2; // or block

 .

 . // other else ifs

 .

else if (expression)

 statementn; // or block

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The if/else if Statement in

Program 4-13

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using a Trailing else to Catch

Errors in Program 4-14

The trailing else clause is optional, but it

is best used to catch errors.

This trailing
else

catches

invalid test

scores

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.7

Flags

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flags

Variable that signals a condition

Usually implemented as a bool variable

Can also be an integer

The value 0 is considered false

Any nonzero value is considered true

As with other variables in functions, must

be assigned an initial value before it is

used

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.8

Logical Operators

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Logical Operators

Used to create relational expressions from

other relational expressions

Operators, meaning, and explanation:

&& AND New relational expression is true if both

expressions are true

|| OR New relational expression is true if either
expression is true

! NOT Reverses the value of an expression – true
expression becomes false, and false becomes
true

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Logical Operators-Examples

 int x = 12, y = 5, z = -4;

(x > y) && (y > z) true

(x > y) && (z > y) false

(x <= z) || (y == z) false

(x <= z) || (y != z) true

!(x >= z) false

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The logical && operator in Program

4-15

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The logical || Operator in Program

4-16

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The logical ! Operator in Program

4-17

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Logical Operator-Notes

! has highest precedence, followed by &&,

then ||

If the value of an expression can be

determined by evaluating just the sub-

expression on left side of a logical

operator, then the sub-expression on the

right side will not be evaluated (short

circuit evaluation)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.9

Checking Numeric Ranges with

Logical Operators

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Checking Numeric Ranges with

Logical Operators
Used to test to see if a value falls inside a range:
 if (grade >= 0 && grade <= 100)

 cout << "Valid grade";

Can also test to see if value falls outside of range:
 if (grade <= 0 || grade >= 100)

 cout << "Invalid grade";

Cannot use mathematical notation:
 if (0 <= grade <= 100) //doesn’t work!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.10

Menus

8/23/2014

9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Menus

Menu-driven program: program execution

controlled by user selecting from a list of

actions

Menu: list of choices on the screen

Menus can be implemented using
if/else if statements

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Menu-Driven Program Organization

Display list of numbered or lettered

choices for actions

Prompt user to make selection

Test user selection in expression

if a match, then execute code for action

if not, then go on to next expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.11

Validating User Input

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Validating User Input

Input validation: inspecting input data to
determine whether it is acceptable

Bad output will be produced from bad
input

Can perform various tests:
Range

Reasonableness

Valid menu choice

Divide by zero

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Input Validation in Program 4-19

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.12

Comparing Characters and

Strings

8/23/2014

10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing Characters

Characters are compared using their ASCII
values

'A' < 'B'

The ASCII value of 'A' (65) is less than the ASCII
value of 'B'(66)

'1' < '2'

The ASCII value of '1' (49) is less than the ASCI
value of '2' (50)

Lowercase letters have higher ASCII codes
than uppercase letters, so 'a' > 'Z'

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Relational Operators Compare

Characters in Program 4-20

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing string Objects

Like characters, strings are compared

using their ASCII values

 string name1 = "Mary";

string name2 = "Mark";

name1 > name2 // true

name1 <= name2 // false

name1 != name2 // true

name1 < "Mary Jane" // true

The characters in each

string must match before

they are equal

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Relational Operators Compare

Strings in Program 4-21

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.13

The Conditional Operator

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Conditional Operator

Can use to create short if/else

statements

Format: expr ? expr : expr;

x<0 ? y=10 : z=20;

First Expression:
Expression to be
tested

2nd Expression:
Executes if first
expression is true

3rd Expression:
Executes if the first
expression is false

8/23/2014

11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Conditional Operator

The value of a conditional expression is

The value of the second expression if the first

expression is true

The value of the third expression if the first

expression is false

Parentheses () may be needed in an

expression due to precedence of

conditional operator

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Conditional Operator in

Program 4-22

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.14

The switch Statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The switch Statement

Used to select among statements from

several alternatives

In some cases, can be used instead of
if/else if statements

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

switch Statement Format

switch (expression) //integer

{

 case exp1: statement1;

 case exp2: statement2;

 ...

 case expn: statementn;

 default: statementn+1;

}

 Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The switch Statement in Program

4-23

8/23/2014

12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

switch Statement Requirements

1) expression must be an integer variable

or an expression that evaluates to an
integer value

2) exp1 through expn must be constant

integer expressions or literals, and must
be unique in the switch statement

3) default is optional but recommended

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

switch Statement-How it Works

1) expression is evaluated

2) The value of expression is compared
against exp1 through expn.

3) If expression matches value expi, the
program branches to the statement
following expi and continues to the end
of the switch

4) If no matching value is found, the
program branches to the statement after
default:

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

break Statement

Used to exit a switch statement

If it is left out, the program "falls through"
the remaining statements in the switch

statement

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

break and default statements in

Program 4-25

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

break and default statements in

Program 4-25

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using switch in Menu Systems

switch statement is a natural choice for

menu-driven program:

display the menu

then, get the user's menu selection

use user input as expression in switch

statement

use menu choices as expr in case

statements

8/23/2014

13

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

4.15

More About Blocks and Scope

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

More About Blocks and Scope

Scope of a variable is the block in which it

is defined, from the point of definition to

the end of the block

Usually defined at beginning of function

May be defined close to first use

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Inner Block Variable Definition in

Program 4-29

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Variables with the Same Name

Variables defined inside { } have local or
block scope

When inside a block within another block,
can define variables with the same name
as in the outer block.

When in inner block, outer definition is not
available

Not a good idea

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Two Variables with the Same

Name in Program 4-30

