
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 5:

Loops and Files

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Increment and Decrement

Operators

++ is the increment operator.

It adds one to a variable.

val++; is the same as val = val + 1;

++ can be used before (prefix) or after (postfix) a
variable:
++val; val++;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Increment and Decrement

Operators
-- is the decrement operator.

It subtracts one from a variable.

val--; is the same as val = val - 1;

-- can be also used before (prefix) or after
(postfix) a variable:
--val; val--;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Increment and Decrement

Operators in Program 5-1

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Increment and Decrement

Operators in Program 5-1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Prefix vs. Postfix

 ++ and -- operators can be used in
complex statements and expressions

In prefix mode (++val, --val) the
operator increments or decrements, then
returns the value of the variable

In postfix mode (val++, val--) the
operator returns the value of the variable,
then increments or decrements

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Prefix vs. Postfix - Examples

 int num, val = 12;

 cout << val++; // displays 12,

 // val is now 13;

 cout << ++val; // sets val to 14,

 // then displays it

 num = --val; // sets val to 13,

 // stores 13 in num

 num = val--; // stores 13 in num,

 // sets val to 12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Notes on Increment and

Decrement

Can be used in expressions:

 result = num1++ + --num2;

Must be applied to something that has a location

in memory. Cannot have:

 result = (num1 + num2)++;

Can be used in relational expressions:

 if (++num > limit)

 pre- and post-operations will cause different

comparisons

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.2

Introduction to Loops: The while

Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Introduction to Loops:
The while Loop

Loop: a control structure that causes a

statement or statements to repeat

 General format of the while loop:

 while (expression)

 statement;

 statement; can also be a block of

statements enclosed in { }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The while Loop – How It Works

while (expression)

 statement;

 expression is evaluated

if true, then statement is executed, and

expression is evaluated again

if false, then the loop is finished and

program statements following statement

execute

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Logic of a while Loop

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The while loop in Program 5-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

How the while Loop in Program 5-

3 Lines 9 through 13 Works

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart of the while Loop in

Program 5-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The while Loop is a Pretest Loop

expression is evaluated before the
loop executes. The following loop will
never execute:

int number = 6;

while (number <= 5)

{

 cout << "Hello\n";

 number++;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Watch Out for Infinite Loops

The loop must contain code to make
expression become false

Otherwise, the loop will have no way of

stopping

Such a loop is called an infinite loop,

because it will repeat an infinite number of

times

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example of an Infinite Loop

int number = 1;

while (number <= 5)

{

 cout << "Hello\n";

}

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.3

Using the while Loop for Input

Validation

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using the while Loop for

Input Validation

Input validation is the process of

inspecting data that is given to the

program as input and determining whether

it is valid.

The while loop can be used to create input

routines that reject invalid data, and repeat

until valid data is entered.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using the while Loop for

Input Validation

Here's the general approach, in

pseudocode:

Read an item of input.

While the input is invalid

 Display an error message.

 Read the input again.

End While

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Input Validation Example

cout << "Enter a number less than 10: ";

cin >> number;

while (number >= 10)

{

 cout << "Invalid Entry!"

 << "Enter a number less than 10: ";

 cin >> number;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Input Validation

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Input Validation in Program 5-5

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.4

Counters

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Counters

Counter: a variable that is incremented or

decremented each time a loop repeats

Can be used to control execution of the

loop (also known as the loop control

variable)

Must be initialized before entering loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Counter Variable Controls the

Loop in Program 5-6

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Counter Variable Controls the

Loop in Program 5-6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.5

The do-while Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The do-while Loop

 do-while: a posttest loop – execute the loop,
then test the expression

General Format:
 do

 statement; // or block in { }

 while (expression);

Note that a semicolon is required after
(expression)

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Logic of a do-while Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

An Example do-while Loop

int x = 1;

do

{

 cout << x << endl;

} while(x < 0);

Although the test expression is false, this loop will
execute one time because do-while is a posttest

loop.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A do-while Loop in Program 5-7

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A do-while Loop in Program 5-7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

do-while Loop Notes

Loop always executes at least once

Execution continues as long as
expression is true, stops repetition

when expression becomes false

Useful in menu-driven programs to bring

user back to menu to make another choice

(see Program 5-8 on pages 245-246)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.6

The for Loop

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The for Loop

Useful for counter-controlled loop

General Format:

 for(initialization; test; update)

 statement; // or block in { }

No semicolon after the update expression or

after the)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Mechanics

for(initialization; test; update)

 statement; // or block in { }

1) Perform initialization

2) Evaluate test expression

If true, execute statement

If false, terminate loop execution

3) Execute update, then re-evaluate test

expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Example

int count;

for (count = 1; count <= 5; count++)

cout << "Hello" << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Closer Look

at the Previous Example

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for the Previous Example

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A for Loop in Program 5-9

Continued…

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A for Loop in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Closer Look at Lines 15 through

16 in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Flowchart for Lines 15 through 16

in Program 5-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

When to Use the for Loop

In any situation that clearly requires

an initialization

a false condition to stop the loop

an update to occur at the end of each iteration

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The for Loop is a Pretest Loop

The for loop tests its test expression

before each iteration, so it is a pretest

loop.

The following loop will never iterate:

for (count = 11; count <= 10; count++)

 cout << "Hello" << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Modifications

You can have multiple statements in the
initialization expression. Separate
the statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++)
{
 cout << x << " plus " << y
 << " equals " << (x+y)
 << endl;
}

Initialization Expression

8/23/2014

9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Modifications

You can also have multiple statements in
the test expression. Separate the
statements with a comma:

int x, y;
for (x=1, y=1; x <= 5; x++, y++)
{
 cout << x << " plus " << y
 << " equals " << (x+y)
 << endl;
}

Test Expression

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Modifications

You can omit the initialization

expression if it has already been done:

 int sum = 0, num = 1;

 for (; num <= 10; num++)

 sum += num;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

for Loop - Modifications

You can declare variables in the
initialization expression:

 int sum = 0;

 for (int num = 0; num <= 10;

num++)

 sum += num;

 The scope of the variable num is the for loop.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.7

Keeping a Running Total

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Keeping a Running Total

running total: accumulated sum of numbers from
each repetition of loop

accumulator: variable that holds running total
int sum=0, num=1; // sum is the

while (num <= 10) // accumulator

{ sum += num;

 num++;

}

cout << "Sum of numbers 1 – 10 is"
 << sum << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Logic for Keeping a Running Total

8/23/2014

10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Running Total in Program 5-12

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Running Total in Program 5-12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.8

Sentinels

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Sentinels

sentinel: value in a list of values that
indicates end of data

Special value that cannot be confused with
a valid value, e.g., -999 for a test score

Used to terminate input when user may
not know how many values will be entered

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Sentinel in Program 5-13

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Sentinel in Program 5-13

8/23/2014

11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.9

Deciding Which Loop to Use

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Deciding Which Loop to Use

The while loop is a conditional pretest loop
Iterates as long as a certain condition exits

Validating input

Reading lists of data terminated by a sentinel

The do-while loop is a conditional posttest loop
Always iterates at least once

Repeating a menu

The for loop is a pretest loop
Built-in expressions for initializing, testing, and updating

Situations where the exact number of iterations is known

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.10

Nested Loops

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested Loops

A nested loop is a loop inside the body of

another loop

Inner (inside), outer (outside) loops:

for (row=1; row<=3; row++) //outer

 for (col=1; col<=3; col++)//inner

 cout << row * col << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested for Loop in Program 5-14

Inner Loop

Outer Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Nested Loops - Notes

Inner loop goes through all repetitions for
each repetition of outer loop

Inner loop repetitions complete sooner
than outer loop

Total number of repetitions for inner loop
is product of number of repetitions of the
two loops.

8/23/2014

12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.11

Using Files for Data Storage

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Files for Data Storage

Can use files instead of keyboard, monitor
screen for program input, output

Allows data to be retained between
program runs

Steps:

Open the file

Use the file (read from, write to, or both)

Close the file

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Files: What is Needed

Use fstream header file for file access

File stream types:
 ifstream for input from a file

 ofstream for output to a file

 fstream for input from or output to a file

Define file stream objects:
 ifstream infile;

 ofstream outfile;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Opening Files

Create a link between file name (outside the program)
and file stream object (inside the program)

Use the open member function:
 infile.open("inventory.dat");

 outfile.open("report.txt");

Filename may include drive, path info.

Output file will be created if necessary; existing file will
be erased first

Input file must exist for open to work

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Testing for File Open Errors

Can test a file stream object to detect if an open
operation failed:
 infile.open("test.txt");

 if (!infile)

 {

 cout << "File open failure!";

 }

Can also use the fail member function

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Files

Can use output file object and << to send

data to a file:

 outfile << "Inventory report";

Can use input file object and >> to copy

data from file to variables:

 infile >> partNum;

 infile >> qtyInStock >>

qtyOnOrder;

8/23/2014

13

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Loops to Process Files

The stream extraction operator >> returns

true when a value was successfully read,

false otherwise

Can be tested in a while loop to continue

execution as long as values are read from

the file:

 while (inputFile >> number) ...

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Closing Files

Use the close member function:

 infile.close();

 outfile.close();

Don’t wait for operating system to close
files at program end:

may be limit on number of open files

may be buffered output data waiting to send
to file

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Letting the User Specify a Filename

In many cases, you will want the user to

specify the name of a file for the program

to open.

In C++ 11, you can pass a string object

as an argument to a file stream object’s
open member function.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Letting the User Specify a

Filename in Program 5-24

Continued…

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Letting the User Specify a

Filename in Program 5-24

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using the c_str Member Function

in Older Versions of C++

Prior to C++ 11, the open member

function requires that you pass the name

of the file as a null-terminated string, which

is also known as a C-string.

String literals are stored in memory as

null-terminated C-strings, but string

objects are not.

8/23/2014

14

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using the c_str Member Function

in Older Versions of C++
string objects have a member function named c_str

It returns the contents of the object formatted as a

null-terminated C-string.

Here is the general format of how you call the c_str

function:

 stringObject.c_str()

Line 18 in Program 5-24 could be rewritten in the

following manner:

 inputFile.open(filename.c_str());

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

5.12

Breaking and Continuing a Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Breaking Out of a Loop

Can use break to terminate execution of

a loop

Use sparingly if at all – makes code harder

to understand and debug

When used in an inner loop, terminates

that loop only and goes back to outer loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The continue Statement

Can use continue to go to end of loop

and prepare for next repetition

 while, do-while loops: go to test, repeat

loop if test passes

 for loop: perform update step, then test,

then repeat loop if test passes

Use sparingly – like break, can make

program logic hard to follow

