8/23/2014

Cie
++ P

From Control Structures \ e
Ch apter 6: through Objects [

Functions 4 %#% 6 . 1

« )

44\:" = .
‘ o Modular Programming

TONY GADDIS

‘Addison-Wesloy
wintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

‘Addisan-Wesloy
i

This program has ane long, complex In this program the problem has been

Modular Programming T S . S
necessary to solve a problem which is handied by a separate function.

@ Modular programming: breaking a program up
into smaller, manageable functions or modules

main function

@ Function: a collection of statements to perform a

task funcion 2
@ Motivation for modular programming:
@ Improves maintainability of programs ins
@ Simplifies the process of writing programs s
¢ function 4

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Defining and Calling Functions

e @ Function call: statement causes a function
to execute

6 . 2 @ Eunction definition: statements that make
up a function

Defining and Calling Functions

‘Addisan-We:

ley

Addisan-Wesley Wes
senirpintal seninpintol
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Function Definition

@ Definition includes:
© return type: data type of the value that function
returns to the part of the program that called it
© name: name of the function. Function names follow
same rules as variables
© parameter list: variables containing values passed to
the function

© body: statements that perform the function’s task,
enclosedin {}

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Function Definition

Return type Parameter list (This one is empty)
Function name
v Function body
int main ( /

Note: The line that reads int main ()is the
function header.

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Return Type

@ If a function returns a value, the type of the value
must be indicated:
int main ()
@ If a function does not return a value, its return
type is void:
void printHeading ()
{
cout << "Monthly Sales\n";

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Calling a Function

© To call a function, use the function name
followed by () and ;

printHeading () ;

© When called, program executes the body of the
called function

© After the function terminates, execution resumes
in the calling function at point of call.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Functions in Program 6-1

Program 61

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Flow of Control in Program 6-1

vold displayMessage()
{

cout << "Hello from the function displayMessage.\n";
]

int main()
{
cont << "Hello from main.\n®
displayMessage();
P cout << "Back in function main agaln.\n":
return 0

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Calling Functions

main can call any number of functions
@ Functions can call other functions
@ Compiler must know the following about a
function before it is called:
“name
@return type
@number of parameters
@ data type of each parameter

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Cit.

6.3

Function Prototypes

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

‘Addisan-Wesloy
mpintof

Function Prototypes

Ways to notify the compiler about a function
before a call to the function:

@ Place function definition before calling function’s
definition

© Use a function prototype (function declaration) — like
the function definition without the body
@ Header: void printHeading()
@ Prototype: void printHeading();

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Function Prototypes in Program 6-5

Program 6-5

// This program has three functions: main, First, and Second.
tinclude <iostream>
using namespace std;

// Function Prototypes
void first();
void second();

int main()

1
cout << "I am starting in function main.\n";
first(); // Call function first
second(); // Call function second
cout << "Back in function main again.\n";
return 0;

(Program Continues)

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Prototypes in Program 6-5

JIRRRRRE AR AR KR RR AR R R AR AR AR RARR
// Definition of function first. *
// This function displays a message. *
JIRRRRRE AR KRR RRRARA AR AR AR RARR

void first()
1
cout << "I am now inside the function first.\n";

¥

JI AR R AR AR AR R KRR AR KRR AR IR AR AR AR A AR AR
// Definition of function second. *
// This function displays a message. *
JI AR R AR AR AR R KRR AR RN KRR R AR AR AR AR AR R AR R

void second()

cout << "I am now inside the function second.\n";

i

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Prototype Notes

Place prototypes near top of program

Program must include either prototype or full
function definition before any call to the
function — compiler error otherwise

» When using prototypes, can place function
definitions in any order in source file

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Ctx.

LA

6.4

Sending Data into a Function

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Sending Data into a Function

© Can pass values into a function at time of call:
c = pow(a, b);

@ Values passed to function are arguments

© Variables in a function that hold the values
passed as arguments are parameters

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

A Function with a Parameter
Variable

void displayValue (int num)
{

cout << "The value is " << num << endl;

The integer variable num is a parameter.
It accepts any integer value passed to the function.

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Function with a Parameter in
Program 6-6

Program 6-6

// This program demonstrates a function with a parameter.
tinclude <iostream>

using namespace std;

// Function Prototype
void displayValue(int);

int maing)

cout << "I am passing 5 to displayValue.\in";
displayValue(5); // Call displayValue with argument 5
cout << "Now I am back in main.\n";

return 0;

Addison Wasley (Program Continues)
<aninpinto

Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley Al rights reserved.

Function with a Parameter in
Program 6-6

Program 6-6 (continued)

AR R R R R A KRR AR AR R R AR AR AR AR AR AR IR A A AR
// Definiticn of function displayValue. *

// It uses an integer parameter whose value is displayed. *
L T T LT T T

vold displayValue(int num)
{

cout << "The value is " << num << endl;
}

Program Output

I am passing 5 to displayValue.
The value is 5

How I am back in main.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function with a Parameter in Program 6-6

displayValue(5) ;

void displayValue (int num)
{
cout << "The value is " << num << endl;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley Al rights reserved.




8/23/2014

Other Parameter Terminology

@ A parameter can also be called a formal
parameter or a formal argument

@ An argument can also be called an actual
parameter or an actual argument

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Parameters, Prototypes, and
Function Headers

@ For each function argument,

©the prototype must include the data type of
each parameter inside its parentheses

©the header must include a declaration for
each parameter inits ()

void evenOrOdd (int); //prototype
void evenOrOdd(int num) //header
evenOroOdd (val) ; //call

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Call Notes

» Value of argument is copied into parameter when
the function is called

» A parameter’s scope is the function which uses it
Function can have multiple parameters

@ There must be a data type listed in the prototype
() and an argument declaration in the function
header () for each parameter

Arguments will be promoted/demoted as
necessary to match parameters

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Passing Multiple Arguments

When calling a function and passing
multiple arguments:

©@the number of arguments in the call must
match the prototype and definition

@the first argument will be used to initialize the
first parameter, the second argument to
initialize the second parameter, etc.

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Passing Multiple Arguments in Program 6-8

Program 6-8

// This program demonstrates a function with three parameters.
tinclude <iostream>
using namespace std;

// Function Prototype
void shewSum(int, int, int);

int main()
{
int valuel, value2, valued;

// Get three integers.

cout << "Enter three integers and I will display ";
cout << "their sum: ";

cin >» valuel >> value2 >> valued;

// €all showSum passing three arguments.
ehowsum(valuel, value2, valuel);
return 0;

Addison Wesley (Program Continues)

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Passing Multiple Arguments in Program 6-8

F T T
// Definition of function showsum. *
// It uses three integer parameters. Their sum is displayed. *
F T S Y

void showSum{int mml, int mum2, int num3)
{
cout << (numl + mum2 + num3) << endl;

i

Program Output with Example Input Shown in Bold

Enter three integers and I will display their sum: 4 8 7 [Enter]
19

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Passing Multiple Arguments in Program 6-8

Function Call — showSum (valuel, value2, value3)

void showSum(int numl, int num2, int num3)

{
}

cout << (numl + num2 + num3) << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Cit

6.5

Passing Data by Value

s of
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Passing Data by Value

@ Pass by value: when an argument is
passed to a function, its value is copied
into the parameter.

@ Changes to the parameter in the function
do not affect the value of the argument

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Passing Information to

Parameters by Value

@ Example: int val=5;
evenOrOdd (val) ;

val num
5 5
argument in parameter in

calling function evenOrodd function

©evenOrodd can change variable num, but
it will have no effect on variable val

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

6.6

Using Functions in
Menu-Driven Programs

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Using Functions in
Menu-Driven Programs

@ Functions can be used
©to implement user choices from menu
©to implement general-purpose tasks:

@Higher-level functions can call general-
purpose functions, minimizing the total number
of functions and speeding program
development time

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

6.7

The return Statement

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

The return Statement

@ Used to end execution of a function

@ Can be placed anywhere in a function
@ Statements that follow the return statement
will not be executed
@ Can be used to prevent abnormal
termination of program
@In a void function without a return
statement, the function ends at its last }

‘Addison-Wesloy
se of

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Performing Division in Program 6-11

Program 6-11

// This program uses a function to perform division. If division
// by zero is detected, the function returns.

#include <iostreams

using namespace std;

// Function prototype.
wvoid divide(double, double);

int main()
double numl, num2;

cout << "Enter two numbers and I will divide the first\n";
cout << "number by the second number: ";

cin >> numl >> num2;

divide(numl, numz);

return 0;

(Program Continues)

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Performing Division in Program 6-11

v d .
argl and arg2. The function divides argl+
resule. If arg? is zera, however, the *

0.0

cout << "Sorry, 1 cannot divide by zerc.\n";
cout << "The guotient is " <= (argl / arg2) =< endl;

Program Output with Example Input Shown In Bold
Enter two numbers and I will divide the first
number by the second number: 120 [Enter]
sorry, I cannot aivide by zero.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

6.8

Returning a Value From a
Function

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Returning a Value From a
Function

@ A function can return a value back to the
statement that called the function.

@You've already seen the pow function,
which returns a value:

double x;
x = pow (2.0, 10.0);

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Returning a Value From a
Function

@ In a value-returning function, the return
statement can be used to return a value from
function to the point of call. Example:

int sum(int numl, int num2)
{
double result;
result = numl + num?2;
return result;

}

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

A Value-Returning Function

Return Type

\

int sum(int numl, int num2)
{
double result;
result = numl + num2;
return result;

Value Being Returned
Ao Wesiey s

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

A Value-Returning Function

int sum(int numl, int num2)

{

return numl + num2;

Functions can return the values of
expressions, such as numl + num?2

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Function Returning a Value in Program 6-12

Program 612

ses a function that returns a value.

prototype
miint, int);

int maini}
{

ssing the contents of
ts. Assiqn the return

<< total << endl;

(Program Continues)

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Returning a Value in Program 6-12

R AR AR R R AR R AR AR AR R AR R AR AR R AR AR AR RAE AR R
// Definition of functicn sum. This function returns *

// the sum of its two parameters. *
R R AR AR AR AR AR AR AR AR RS ARATEA AT AR RAEAER

int sum(int numl, int num2)

1
return numl + num2;

1

Program Output
The sum of 20 and 40 is 60

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Returning a Value in Program 6-12

total = sum(valuel, value2);

4]
m int sum(int numl, int num2)
{

return num + num;

}

The statement in line 17 calls the sum function,
passing valuel and value2 as arguments.
The return value is assigned to the total variable.

AddisonWesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Another Example from Program 6-13

area = PI * square(radius);

double square(double number)
{
return number * number;

!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Value From a
Function

© The prototype and the definition must
indicate the data type of return value
(not void)

@ Calling function should use return value:
@ assign it to a variable
@send itto cout
©use it in an expression

Wesley
of

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Cix..

LA

6.9

Returning a Boolean Value

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Returning a Boolean Value

@ Function can return true or false

@ Declare return type in function prototype
and heading as bool

@ Function body must contain return
statement(s) that return true or false

@ Calling function can use return value in a
relational expression

=2

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Returning a Boolean Value in Program 6-15

Program 6-15

/f This program uses a fumetion that returns true or false.

it is aven or odd: ";

// Indicate whether it is even or odd.
if (isEven(val})
cout << wal << * is even.\n";
else
<< wal << * is odd.\n";

‘Addisan-Wesley ? (Program Continues)

senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Returning a Boolean Value in Program 6-15

. This

& netion *
is even or false if the argument *

1"
i
1" ue is a bool.
e "

bool isBven(int number)

bool &

= 1)
/! The number is even if there is no remainder.

status = false; // Otherwise, the number is odd.
return status;

Program Output with Example Input Shown In Bold
Enter an integer and I will tell you if it iz even or odd: 5 [Enter]
5 is cad.

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Cix..

6.10

Local and Global Variables

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Local and Global Variables

© Variables defined inside a function are local to
that function. They are hidden from the
statements in other functions, which normally
cannot access them.
Because the variables defined in a function are

hidden, other functions may have separate,
distinct variables with the same name.

L
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Local Variables in Program 6-16

Program 6-16

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Local Variables in Program 6-16

Program Output

In main, num is 1

In anotherFunction, num is 20
Back in main, mum is 1

variable s visitle

L
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Local Variable Lifetime

@ A function’s local variables exist only while the
function is executing. This is known as the
lifetime of a local variable.

@ When the function begins, its local variables and
its parameter variables are created in memory,
and when the function ends, the local variables
and parameter variables are destroyed.

© This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Global Variables and

Global Constants

» A global variable is any variable defined outside
all the functions in a program.

@ The scope of a global variable is the portion of
the program from the variable definition to the
end.

© This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

‘Addisan-Wesley
seninpintol

10



8/23/2014

Global Variables and
Global Constants

@ You should avoid using global variables
because they make programs difficult to
debug.

@ Any global that you create should be
global constants.

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Global Constants in Program 6-19

Program 6-19

// This program calculates gross pay.
tinclude <iostream

tinclude <iomanip>

using namespace std;

// Global constants
const double DAY RATE = 22.55; // Hourly pay rate

const double BASE HOURS = 40.0;  // Max non-overtime hours
const double OT MULTIPLIER = 1.5; // Overtime multiplier

// Punction prototypes
double getBasePay(double);
deuble getOvertimePay(double):
int main()

double hours, // Hours worked

basePay, // Base pay
overtime = 0.0, // Overtime pay
totalPay; // Total pay

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Global Constants in Program 6-19

// Get overtime pay, if any.
if (hours > BASE_HOURS)
overtime = getOvertimePay(hours);

// Determine base pay.

if (hoursWorked > BASE_HOURS)
basePay = BASE_HOURS * PAY RATE;

else - -
basePay = hoursWorked * PAY_RATE;

// Determine overtime pay.
if (hoursWorked > BASE_HOURS)
{
overtimePay = (hoursiorked - BASE_HOURS) *
PAY_RATE * OT_MULTIPLIER;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Initializing Local and Global
Variables

@ Local variables are not automatically
initialized. They must be initialized by
programmer.

@ Global variables (not constants) are
automatically initialized to 0 (numeric) or
NULL (character) when the variable is
defined.

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

6.11

Static Local Variables

‘Addisan-Wesley
senimprintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Static Local Variables

» Local variables only exist while the function is
executing. When the function terminates, the
contents of local variables are lost.

» static local variables retain their contents
between function calls.

» static local variables are defined and
initialized only the first time the function is
executed. 0 is the default initialization value.

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

11



8/23/2014

Local Variables Do Not Retain Values
Between Function calls in Program 6-21

Program 6-21

// This program shows that local variables do not retain
// their wvalues between function calls.

tinclude <iostream>

using namespace std;

// Function prototype
void showLocal();

int main()
showLocal();
showlLocal();
return 0;
T
Addisan-Wasloy (Program Continues)
sanimprintol

Copyright © 2015, 20;

, 2009 Pearson Education, Inc.

Wesley Al rights reserver

Local Variables Do Not Retain Values Between
Function calls in Program 6-21

Program 6-21  (conitiuied)

Definition of function showloc
The initial value of locallum, which is 5, is displayed. *
e value of locallum is then changed to 99 before the +

function returns.

void showLocal()

int locallum = 5;

/ Local variable

localtum is ' << locallum << sndl;

Program Output
lecallum is 5
locallum is 5

In this program, each time showl is called, the

Asdsnesley  variable is re-created and initialized with the value 5.

Copyright © 2015, 2012, 2009 Pearson Education, Inc, Publishing as Addison

sley All rights reserved.

A Different Approach, Using a Static
Variable in Program 6-22

Program 6-22

// This program uses a static local variable.
tinclude <iostream>
using namespace std;

vold showsStatic(); // Function prototype

int maing)
#/ call the showStatic function five times.
for (int count = 0; count < 5; count++)

showStatic();
return O;

Addisan-Wesley (Program Continues)
senimpintol

2015, 2012, 2009 Pearson Education. Inc. Publishing as Addison-Wesley All rights reserved.

A Different Approach, Using a Static
Variable in Program 6-22

Program 6-22  (continued)

/ Definition of function sh
/ stathum is a static local . Its value is displayed *
/ and then incremented just before the function returns. *
[1rn srenreas rrrsnnras rreenx

void showStatic()
static int statium;

cout << "statNum is "
statliume+;

}

<< statum << endl;

Program Output

stathum is 0 «—— 1 is automatically initialized to
statBum is 1

e 0. Notice that it retains its value between
stathum is 3 function calls
statlum is 4
Addsan Wesey
o

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

If you do initialize a local static variable, the
initialization only happens once. See Program 6-23.
// Definition of function showStatic. *

// statWum is a static local variable. Its value is displayed *
// and then incremented just before the function returns.

void showstatic()

static int statbum =

cout << "statNum is " << statlum << endl;
statlume+;

i

Program Output
statlium is 5

statlum is
statlum is
statlum is
statlum is

ight © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserveg

6.12

Default Arguments

ight © 2015, 2012, 2009 Pearson Education, Inc, Publishing as Addison

sley All rights reserved.

12



8/23/2014

Default Arguments

A Default argument is an argument that is
passed automatically to a parameter if the
argument is missing on the function call.

» Must be a constant declared in prototype:
void evenOrOdd(int = 0);
» Can be declared in header if no prototype

» Multi-parameter functions may have default
arguments for some or all of them:
A i int getSum(int, int=0, int=0);

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Default Arguments in Program 6-24

Program 6-24

// This program demonstrates d¢fault function arguments.
tinclude <iostream>
using namespace std;

// Functien prototype witd default/arguments
void displayStars(int = 10, int = 1);
int main()
displayStars(); // Use default values for cols and rows.
cout << endl;
displayStars(5);
cout << endl;
displaystars(7, 3); // Use 7 for cols and 3 for rows.
return 0;

// Use default value for rows.

(Program Continues)

s of
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Default Arguments in Program 6-24

Program Output

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Default Arguments

@1f not all parameters to a function have
default values, the defaultless ones are
declared first in the parameter list:

int getSum(int, int=0, int=0);// OK
int getSum(int, int=0, int); // NO

@When an argument is omitted from a
function call, all arguments after it must also
be omitted:

sum = getSum(numl, num2); // OK
sum = getSum(numl, , num3); // NO

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Ctt...

6.13

Using Reference Variables as
Parameters

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Using Reference Variables as
Parameters

@ A mechanism that allows a function to
work with the original argument from the
function call, not a copy of the argument

@ Allows the function to modify values
stored in the calling environment

» Provides a way for the function to ‘return’
more than one value

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

13



8/23/2014

Passing by Reference

» A reference variable is an alias for another
variable

» Defined with an ampersand (&)
void getDimensions (inté&, inté&);
@ Changes to a reference variable are made
to the variable it refers to
@ Use reference variables to implement
passing parameters by reference

‘Addisan-Wesloy
senimpintol

Passing a Variable By Reference in
Program 6-25

Program 6-25

// This program uses a yeference variable as a function
// parameter.

#include <iostream>

using namespace std;

// Function prototypk. The parameter is a reference variable.
void doubleNum(int &);

int main()
{

int value = 4;

cout << "In maip; value is " << value << endl;
cout << "Now gAlling doubleNum..." << endl;
doubleNum(value);
cout << "Now back in main. value is " << value << endl;
return 0;
¥
s (Program Continues)

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Addisan-We
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Passing a Variable By Reference in
Program 6-25

R R R R AR R KRR R AR R R KRR KRR R RT AR

// Definition of doubleNum. *
// The parameter\refVar is a reference variable. The value *
// in refVar is dgubled. *

J R

void doubleNum (int &refVar)
{

refvar *= 2;
}

Program Output

In main, value is 4

Now calling doublelum...
Wow back in main. value is 8

‘Addisan-Wesloy
< Lol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Reference Variable Notes

Each reference parameter must contain &
Space between type and & is unimportant
Must use & in both prototype and header

Argument passed to reference parameter must be a
variable — cannot be an expression or constant

Use when appropriate — don’t use when argument
should not be changed by function, or if function needs
to return only 1 value

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

6.14

Overloading Functions

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Overloading Functions

© Qverloaded functions have the same name
but different parameter lists

Can be used to create functions that perform
the same task but take different parameter
types or different number of parameters
Compiler will determine which version of
function to call by argument and parameter
lists

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

14



8/23/2014

Function Overloading Examples

Using these overloaded functions,

void getDimensions (int); // 1
void getDimensions (int, int); // 2
void getDimensions (int, double); // 3

void getDimensions (double, double);// 4
the compiler will use them as follows:

int length, width;

double base, height;

getDimensions (length) ; // 1
getDimensions (length, width); // 2
getDimensions (length, height); // 3
getDimensions (height, base); // 4

seninpint
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Function Overloading in Program 6-27

Program 6-27

(Program Continues)

s of
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Function Overloading in Program 6-27

It returns
/4 the squa;

double square(
1

return 1
}

Program Output with Example Input Shown In Bold
Enter an integer and a £loating-point value: 12 4.2 [Enter]
Here are their squares: 144 and 17.64

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

AT

6.15

The exit () Function

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The exit () Function

@ Terminates the execution of a program

@ Can be called from any function

@ Can pass an int value to operating
system to indicate status of program
termination

@ Usually used for abnormal termination of
program

@ Requires cstdlib header file

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The exit () Function

@ Example:
exit (0);

©The cstdlib header defines two
constants that are commonly passed, to
indicate success or failure:
exit (EXIT_SUCCESS) ;
exit (EXIT_FAILURE) ;

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

15



8/23/2014

Cit

6.16

Stubs and Drivers

‘Addison Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Stubs and Drivers

@ Useful for testing and debugging program
and function logic and design

@ Stub: A dummy function used in place of
an actual function
©Usually displays a message indicating it was

called. May also display parameters

@ Driver: A function that tests another

function by calling it

& Various arguments are passed and return
values are tested

Addisan-
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

16



