8/23/2014

e

From Control Structures

Ch apter 7 through Objects
Arrays "d\\yﬁ: Sf Z}ft <
Pts d =
& ‘ b
|
= A

TONY GADDIS

Ce

AT,

7.1

Arrays Hold Multiple Values

L
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Arrays Hold Multiple Values

@ Array: variable that can store multiple
values of the same type

@ Values are stored in adjacent memory
locations
@ Declared using [] operator:
int tests[5];

L
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Array - Memory Layout

@ The definition:
int tests[5];
allocates the following memory:

rr 0 71

first second third fourth fifth
element element element element element

L
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Array Terminology

In the definition int tests[5];

@ int is the data type of the array elements

@ tests is the name of the array

@5, in [5], is the size declarator. It shows
the number of elements in the array.

@ The size of an array is (number of
elements) * (size of each element)

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Array Terminology

@ The size of an array is:
“the total number of bytes allocated for it
& (number of elements) * (number of bytes for
each element)
& Examples:
int tests[5] is an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10]is an array of
80 bytes, assuming 8 bytes for a 1ong double

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Size Declarators

@ Named constants are commonly used as
size declarators.

const int SIZE = 5;
int tests[SIZE];

@ This eases program maintenance when
the size of the array needs to be changed.

seninpintof
@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

7.2

Accessing Array Elements

s of
@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

& Each element in an array is assigned a
unique subscript.

@ Subscripts start at 0

subscripts:
0 1 2 3 4

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

& The last element’s subscript is n-1 where n
is the number of elements in the array.

subscripts:
0 1 2 3 4

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

© Array elements can be used as regular variables:
tests[0] = 79;
cout << tests[0];
cin >> tests([l];
tests[4] = tests[0] + tests[1l];
@ Arrays must be accessed via individual
elements:
cout << tests; // not legal

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements in Program 7-1

Program 7-1

// This program asks for the number of hours worked
/f by six employees. It stores the values in an array.
#include <iostream>
using namespace std;

int main()
1{
const int NUM_EMPLOYEES = 6;
int hours[NUM_EMPLOYEES];

// Get the hours worked by each employee.

cout Enter the hours worked by "

UM_EMPLOYEES << * employees: °;
cin »> houra[0];
ein > hours(1];
cin > hours(2];
cin >> hours[3];
cin >> hours[4];
cin >> hours[5];

(Program Continues)
Asison Weley
<enimpinte

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Accessing Array Elements in Program 7-1 .
g Ay ¢ Accessing Array Contents

@ Can access element with a constant or
literal subscript:

Program Output with Example Input Shown In cout << tests[3] << endl;
Enter the hours worked by 6 employees: 20 1240 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15
_ @ Can use integer expression as subscript:
Here are the contents of the hours array, with the values) .
entered by the user in the example output: int 1 = 5;
‘ bours(4) hours(s cout << tests[i] << endl;

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Using a Loop to Step Through A Closer Look At the Loop
an Array

© Example — The following code defines an

array, numbers, and assigns 99 to each S
element; The variable count starts at 0, variable count reaches 5, which
: which is the first valid subscript value is the first invalid subscript value.

i‘! !’
const int ARRAY SIZE = 5; for (count = 0; count < ARRAY_SIZE; count++)
_ ’ numbers(count] = 99; ‘
int numbers[ARRAY SIZE];
The variable count is
incremented after

0; count < ARRAY SIZE; count++) each itdration

for (int count =
numbers[count] = 99;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Cit..

L5,

Default Initialization
© Global array - all elements initialized to 0

by default
7.3

©Local array - all elements uninitialized by
default
No Bounds Checking in C++

‘Addisan-Wesley ‘Addisan-Wesley
senimpintol seninpintol
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved. @ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

No Bounds Checking in C++

@When you use a value as an array
subscript, C++ does not check it to make
sure it is a valid subscript.

@In other words, you can use subscripts
that are beyond the bounds of the array.

seninpintof
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Code From Program 7-5

@ The following code defines a three-element
array, and then writes five values to it!

const int SIZE = 3; // Constant for the array size
int values[SIZE]; // Bn array of 2 integers
int count; /{ Loop counter variable

// Attempt to store five numbers in the three-element array.
cout << "I will store 5 numbers in a 3 element array!\n";
for (count = 0; count < 5; count++)

values[count] = 100;

s of
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

What the Code Does

The way the values array is set up in memory.
The outlined area represents the array.
Memory outside the array
(Each block = 4 bytes)

[S S —

values(0] values(l] values(2]

Memory outside the array
(Each block = 4 bytes)

How the numbers assigned to the array overflow the array’s boundaries.
The shaded area is the section of memory illegally written to.

Anything

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

No Bounds Checking in C++

& Be careful not to use invalid subscripts.

@ Doing so can corrupt other memory
locations, crash program, or lock up
computer, and cause elusive bugs.

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Off-By-One Errors

@ An off-by-one error happens when you use
array subscripts that are off by one.

©This can happen when you start subscripts
at 1 rather than O:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers [count] = 0;

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

7.4

Array Initialization

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Array Initialization

@ Arrays can be initialized with an
initialization list:

const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

@ The values are stored in the array in the order
in which they appear in the list.

@ The initialization list cannot exceed the array
size.

‘Addisan-Wesloy
se ol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Code From Program 7-6

for (int count = 0

Program Output
Month 1 has 31 days.
Month 2 nas 28 days.
Month 3 has 31 days.

Month 11 has 30 days.

‘Addisan Wesloy Month 12 has 31 days.
se o

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Partial Array Initialization

@If array is initialized with fewer initial
values than the size declarator, the
remaining elements will be setto 0:

int numbers

(77 = {1, 2, 4, 8};
’—’L‘ ’J Uninitialized Elements
[« T s 7

[T 2 o [o 0o |
numbers numbers numbers numbers numbers numbers numbers
ol [1] (2] (3] [4] [s] (el

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Implicit Array Sizing

@ Can determine array size by the size of
the initialization list:
int quizzes[]={12,17,15,11};

[12 ‘ 17 ‘ 15 ‘ 11 |

@& Must use either array size declarator or
initialization list at array definition

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

7.5

The Range-Based for Loop

‘Addisan-Wesley
senimprintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The Range-Based for Loop

@ C++ 11 provides a specialized version of the for loop
that, in many circumstances, simplifies array
processing.

© The range-based for loop is a loop that iterates once for
each elementin an array.

@ Each time the loop iterates, it copies an element from the
array to a built-in variable, known as the range variable.

@ The range-based for loop automatically knows the
number of elements in an array.

You do not have to use a counter variable.

@ You do not have to worry about stepping outside the bounds of
the array.

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

The Range-Based for Loop

» Here is the general format of the range-based for loop:

for (dataType rangeVariable : array)
statement;,

dataType is the data type of the range variable.

rangeVariable is the name of the range variable. This variable
will receive the value of a different array element during each
loop iteration.

array is the name of an array on which you wish the loop to
operate.

statement is a statement that executes during a loop iteration. If
you need to execute more than one statement in the loop, enclose
the statements in a set of braces.

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

The range-based for loop in Program 7-10

// This program demonstrates the range-based for loop.
#include <iostream>
using namespace std;

int main()
{
// Define an array of integers.
int numbers(] = { 10, 20, 30, 40, 50 };

// Display the values in the array.
for (int wval : numbers)
cout << val << endl;

return 0;

}

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Modifying an Array with a Range-
Based for Loop

@ As the range-based for loop executes, its
range variable contains only a copy of an array
element.

& You cannot use a range-based for loop to
modify the contents of an array unless you
declare the range variable as a reference.

@ To declare the range variable as a reference
variable, simply write an ampersand (&) in front
of its name in the loop header.

2 Program 7-12 demonstrates

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Modifying an Array with a Range-
Based for Loop in Program 7-12

const int SIZE = 5;
int numbers[5];

// Get values for the array.

for (int : numbers)

{
cout << "Enter an integer value: ";
cin >> val;

}

// Display the values in the array.
cout << "Here are the values you entered:\n";
for (int val : numbers)

cout << val << endl;

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Modifying an Array with a
Range-Based for Loop

for (auto &val : numbers)

{
cout << "Enter an integer value: ";
cin >> val;

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The Range-Based for Loop
versus the Regular for Loop

& The range-based for loop can be used in
any situation where you need to step
through the elements of an array, and you
do not need to use the element subscripts.

@ 1f you need the element subscript for some
purpose, use the regular for loop.

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

‘Addisan-Wesley
mintof

8/23/2014

Cix..

7.6

Processing Array Contents

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Processing Array Contents

& Array elements can be treated as ordinary
variables of the same type as the array

@When using ++, —- operators, don’t
confuse the element with the subscript:
tests[i]++; // add 1 to tests[i]
tests[i++]; // increment i, no
// effect on tests

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Array Assignment

To copy one array to another,

@ Don't try to assign one array to the other:
newTests = tests; // Won't work

@ Instead, assign element-by-element:
for (1 = 0; 1 < ARRAY SIZE; i++)
newTests[i] = tests[i];

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an
Array

@You can display the contents of a
character array by sending its name to
cout:

char fName[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

‘Addisan-Wesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an
Array

@ For other types of arrays, you must print
element-by-element:

for (1 = 0; 1 < ARRAY SIZE; i++)
cout << tests[i] << endl;

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an
Array

& In C++ 11 you can use the range-based
for loop to display an array's contents, as
shown here:

for (int wval : numbers)
cout << val << endl;

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Summing and Averaging
Array Elements

@ Use a simple loop to add together array
elements:
int tnum;
double average, sum = 0;
for (tnum = 0; tnum < SIZE; tnumt++)
sum += tests[tnum];
©0Once summed, can compute average:
average = sum / SIZE;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Summing and Averaging
Array Elements

@In C++ 11 you can use the range-based
for loop, as shown here:

double total = 0; // Initialize accumulator
double average; // Will hold the average
for (int val : scores)

total += val;
average = total / NUM SCORES;

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Finding the Highest Value in an
Array

int count;
int highest;
highest = numbers([0];
for (count = 1; count < SIZE; count++)
{
if (numbers[count] > highest)
highest = numbers[count];

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Finding the Lowest Value in an
Array

int count;
int lowest;
lowest = numbers([0];
for (count = 1; count < SIZE; count++)
{
if (numbers[count] < lowest)
lowest = numbers[count];

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Partially-Filled Arrays

@If it is unknown how much data an
array will be holding:
“Make the array large enough to hold the
largest expected number of elements.

@Use a counter variable to keep track of
the number of items stored in the array.

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Comparing Arrays

@ To compare two arrays, you must compare
element-by-element:

const int SIZE = 5;

firstArray[SIZE] = { 5, 10, 15, 20, 25 };

s ndArray(SIZE) = { 5, 10, 15, 20, 25 };

1 arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable
// Compare the two arrays.

while (arraysEqual && count < SIZE

{

if (firstArray[count] != secondArray[count])
arraysEqual = false;
count++;

}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

Addisan-Wesley cout << "The arrays are not equal.\n";
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

Using Parallel Arrays

@ Parallel arrays: two or more arrays that
contain related data

7 7 @ A subscript is used to relate arrays:
elements at same subscript are related

@ Arrays may be of different types
Using Parallel Arrays

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

Parallel Array Example Parallel Arrays in Program 7-15

const int SIZE = 5; // Program 7-15

Array size

int 1d[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; //

course grade

for(int i = 0; 1 < SIZE; i++)

{
cout << "Student ID: " << id[i]

<< " average: " << average[i]
<< " grade: " << grade[i]
<< endl;

}

* << (indextl) << "1 *
AddionWesioy

‘Addison-Wesloy
s fntol

(Program Continues)
m Cﬂeﬂlgm 2015, 2012, 2009 Pearson Education, Inc.. Pubhshi@ as Addison- Wsslsz All nﬁhls reserved.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Parallel Arrays in Program 7-15 Parallel Arrays in Program 7-15

" anl-ly ».m employea’s gross pay.

Program 7-15 (contued)
cout << “Here s the gross pay 1 employss:in® Here 1s the gross pay for each employeer
o < tived << showpotne o<’ ian(2); Exployee #1: §97.50
for (int index = 0; index < NUM_ENPLOYEES; indew+t) Enployee #2: §129.30
i Employee #1: 5219.00
double grossPay - hours[index] * payRate[index]; Enployes #4: 575000
cout << "Employee 4" << (index + 1)
cout << "1 §* << grossPay << eadl;

Enployes 451 $626.00

return 0 The hours and payRate arrays are related through their subscripts:
¥

Program Output with Example lnput Shown in Bold

Enter the hours wored by 5 smployess and their

hourly pay rates.

Hours worked by employee #1: 10 [Entes

Hourly pay rate for employes #l: n7§ [Enter]

Hours worked by employee #2: 15 [Entes

Hourly pay rate for employee 32 l.m [Enter]
Hours worked by employee #3: 20 [En

Hourly pay rate for employes #3: msn[nmr]
Hours worked by employee $4: 40 [Entes

Hourly pay rate for employos 4: 18, 7s [Enter]
Hours worked by employes #5: 40 [Enter]
Hourly pay rate for employes 35: 15.65 [Enter]

(program cutput continues)

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

8/23/2014

7.8

Arrays as Function Arguments

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Arrays as Function Arguments

@ To pass an array to a function, just use the array
name:

showScores (tests) ;
@ To define a function that takes an array
parameter, use empty [] for array argument:
void showScores (int []);
// function prototype
void showScores (int tests|[])
// function header

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Arrays as Function Arguments

@ When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:

showScores (tests, ARRAY_SIZE);
@ Array size must also be reflected in prototype,
header:
void showScores (int [], int);
// function prototype
void showScores (int tests[], int size)
// function header

7-57

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Passing an Array to a Function in Program 7-17

Program 7-17

// This program demonstrates an array being passed to a function.
#include <iostream>
using namespace std;

void showValues(int [], int); // Function prototype
int main()
{
const int ARRAY_SIZE = 8;
int numbers|ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

showValues(numbers, ARRAY_SIZE);
return 0;

(Program Continues)

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Passing an Array to a Function in Program 7-17

R E e R E g T
// Definition of function showValue. *
// This function accepts an array of integers and *
// the array's size as its arquments. The contents *
// of the array are displayed. *
R L

void showValues(int nums[], int size)
1
for (int index = 0; index < size; index++)
cout << nums[index] << " ";
cout << endl;
}

Program Output
5 10 15 20 25 20 35 40

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Modifying Arrays in Functions

& Array names in functions are like
reference variables — changes made to
array in a function are reflected in actual
array in calling function

© Need to exercise caution that array is not
inadvertently changed by a function

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

10

8/23/2014

Ciz..

LA
P

7.9

Two-Dimensional Arrays

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Two-Dimensional Arrays

@ Can define one array for multiple sets of
data

@ Like a table in a spreadsheet
@ Use two size declarators in definition:

const int ROWS = 4, COLS = 3
int exams[ROWS] [COLS];

@ First declarator is number of rows;
wenSECONd is nUMber of columns

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Two-Dimensional Array
Representation

const int ROWS = 4, COLS = 3; int
exams [ROWS] [COLS] ;
exams [0] [0] exams [0] [1] exams [0] [2]
exams [1] [0] exams [1][1] exams [1] [2]
exams [2] [0] exams [2] [1] exams [2] [2]
exams [3] [0] exams [3] [1] exams [3] [2]

% Use two subscripts to access element:
exams[2] [2] = 86;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

Program 7-21

4 ram demonstrates a two-dimensional array.

(progiam continues)

‘Addison-Wesloy

seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

Program 7-21 (continued)

return 0;

‘Addisan-Wesley
senimprintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

Program Output with Example input Shown in Bold
This program will calculate the total sales of
all the company's divisions.

Enter the following sales data:

Division 1, Quarter 1: $31569.45 [Enter]
Division 1, Quarter 2: $29654.23 [Enter]
Division 1, Quarter 3: $32982.54 [Enter]
Division 1, Quarter 4: $39651.21 [Enter]

Division 2, Quarter l: §56321.02 [Enter]
Division 2, Quarter 2: 554128.63 [Enter]
Division 2, Quarter 3: $41235.85 [Enter]
Division 2, Quarter 4: 554652.33 [Enter]

Division 3, Quarter l: $29654.35 [Enter]
Division 3, Quarter 2: $28963.32 [Enter]
Division 3, Quarter 3: $25353.55 [Enter]
Division 3, Quarter 4: $32615.88 [Enter]

The total sales for the company are: §$456782.34

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

11

8/23/2014

2D Array Initialization

© Two-dimensional arrays are initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS] [COLS] = { {84, 78},

{92, 97} };

84 |78

92 |97

@ Can omit inner { }, some initial values in a row —
array elements without initial values will be set to 0
or NULL

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Two-Dimensional Array as
Parameter, Argument

© Use array name as argument in function call:
getExams (exams, 2);
@ Use empty [] for row, size declarator for column in
prototype, header:
const int COLS = 2;
// Prototype
void getExams (int [][COLS], int);

// Header
void getExams (int exams[] [COLS], int rows)

‘Addison-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

Example — The showArray
Function from Program 7-22

JRE R KRR KRR R AR R R R AR AR E AR R AR R R E R R A TR A AR R AR AR AT RF K

// Function Definition for showArray *
// The first argument is a two-dimensional int array with COLS *
// columns. The second argument, rows, specifies the number of *

// rows in the array. The function displays the array's contents. *
AR R AR AR AR AR EA AR AR AR KRR KA AEA TR AR ARTERIAE AT RS

void showArray(int array[][COLS], int rows)
! for (int x = 0; X < Irows; X++)
‘ for (int y = 0; y < COLS; y++)
! cout << setw(4) << array[x][y] << " ";
io\.\t << endl;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

How showArray is Called

int tablel[TBL1_ROWS][COLS] = {{l, 2 P

{5, 6, 7, 8},
{9, 10, 11, 12}};
int table2[TBL2 ROWS][COLS] = {{l0, 20, 30, 40},

{50, &0, 70, 80},
{90, 100, 110, 120},
{130, 140, 150, 160}};

cout << "The contents of tablel are:\n";
showArray(tablel, TBL1 ROWS);
cout << "The contents of table2 are:\n";
showhArray(table2, TBL2_ROWS);

‘Addison-Wesloy

seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Summing All the Elements in a
Two-Dimensional Array
© Given the following definitions:

const int NUM_ROWS = 5; // Number of rows
const int NUM_COLS = 5; // Number of columns
int total = 0; // Accumulator
int numbers[NUM ROWS] [NUM COLS] =

2, 7, 9, 6, 4},

{6, 1, 8, 9, 4},

4, 3, 7, 2, 9},

9, 9, 0, 3, 1},

{6, 2, 7, 4, 1}};

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Summing All the Elements in a
Two-Dimensional Array

// Sum the array elements.
for (int row = 0; row < NUM _ROWS; row++)
{
for (int col = 0; col < NUM_COLS; col++)
total += numbers[row][col];

}

// Display the sum.
cout << "The total is " << total << endl;

AddisonWesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

12

8/23/2014

Summing the Rows of a
Two-Dimensional Array
© Given the following definitions:

const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // RAccumulator
double average; // To hold average scores
double scores[NUM_STUDENTS] [NUM_SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Summing the Rows of a
Two-Dimensional Array

// Get each student's average score.
for (int row = 0; row < NUM_STUDENTS; row++)
{

// Set the accumulator.

total = 0;

// Sum a row.

for (int col = 0; col < NUM_SCORES; col++)

total += scores[row] [col];

// Get the average

average = total / NUM_SCORES;

// Display the average.

cout << "Score average for student "

<< (row + 1) << " is " << average <<endl;

ek

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

Summing the Columns of a
Two-Dimensional Array
© Given the following definitions:

const int NUM_STUDENTS = 3;
const int NUM_SCORES = 5;
double total; // RAccumulator
double average; // To hold average scores
double scores[NUM_STUDENTS] [NUM_SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},
{82, 73, 77, 82, 89}};

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Summing the Columns of a
Two-Dimensional Array

// Get the class average for each score.
for (int col = 0; col < NUM _SCORES; col++)
{
// Reset the accumulator.
total = 0;
// Sum a column
for (int row = 0; row < NUM STUDENTS; row++)
total += scores[row] [col];
// Get the average
average = total / NUM_STUDENTS;
// Display the class average.
cout << "Class average for test " << (col + 1)
<< " is " << average << endl;

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

7.10

Arrays with Three or More
Dimensions

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Arrays with Three or More
Dimensions

@ Can define arrays with any number of
dimensions:
short rectSolid[2][3][5];
double timeGrid[31[411[31[4];
@ When used as parameter, specify all but
1st dimension in prototype, heading:
void getRectSolid(short []1[3]1[5]);

AddisonWesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

13

8/23/2014

Cix..

7.12

Introduction to the STL vector

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Introduction to the STL vector

& A data type defined in the Standard
Template Library (covered more in Chapter
16)

& Can hold values of any type:

vector<int> scores;

& Automatically adds space as more is
needed — no need to determine size at
definition

@ Can use [] to access elements

‘Addison-Wesloy
se of

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Declaring Vectors

@ You must #include<vector>

@ Declare a vector to hold int element:
vector<int> scores;

@ Declare a vector with initial size 30:
vector<int> scores (30);

@ Declare a vector and initialize all elements to 0:
vector<int> scores (30, 0);

@ Declare a vector initialized to size and contents
of another vector:
vector<int> finals(scores);

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Adding Elements to a Vector

If you are using C++ 11, you can initialize a vector with a
list of values:

vector<int> numbers { 10, 20, 30, 40 };
@ Use push_back member function to add element to a
full array or to an array that had no defined size:
scores.push back(75);

@ Use size member function to determine size of a
vector:

howbig = scores.size();

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Removing Vector Elements

& Use pop back member function to remove last
element from vector:
scores.pop_back() ;
@ To remove all contents of vector, use clear
member function:
scores.clear();
@ To determine if vector is empty, use empty
member function:
while (!scores.empty())

‘Addisan-Wesley
ce ol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Using the Range-Based for Loop with a vector in C++ 11

Program 7.25

// This program demonstrates the range-based for loop with a vector.

/4 Define and initiallze a vector.
vector<int> numbers { 10, 20, 30, &0, 50);

// Display the vector slements.
for (int val 1 numbers)
cout << val << endl;

return 0;
}

Program Output

‘Addisan-Wesley |
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

14

Other Useful Member Functions

Member Description Example
Function
at (elt) Returns the value of the element at | cout <<
position elt in the vector vecl.at (i);
capacity () Returns the maximum number of maxelts =
elements a vector can store without | vecl.capacity();
allocating more memory
reverse () Reverse the order of the elements | vecl.reverse () ;
in a vector
resize Add elements to a vector, vecl.resize(5,0);
(elts,val) |optionally initializes them
swap (vec2) Exchange the contents of two vecl.swap (vec2) ;
vectors

‘Addisan-Wesloy
senimpintol

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

8/23/2014

15

