
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 7:

Arrays

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.1

Arrays Hold Multiple Values

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Arrays Hold Multiple Values

Array: variable that can store multiple

values of the same type

Values are stored in adjacent memory

locations

Declared using [] operator:

 int tests[5];

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array - Memory Layout

The definition:

 int tests[5];

 allocates the following memory:

first
element

second
element

third
element

fourth
element

fifth
element

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Terminology

In the definition int tests[5];

int is the data type of the array elements

tests is the name of the array

5, in [5], is the size declarator. It shows
the number of elements in the array.

The size of an array is (number of
elements) * (size of each element)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Terminology

The size of an array is:

the total number of bytes allocated for it

 (number of elements) * (number of bytes for
each element)

Examples:
 int tests[5] is an array of 20 bytes,

assuming 4 bytes for an int

 long double measures[10]is an array of
80 bytes, assuming 8 bytes for a long double

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Size Declarators

Named constants are commonly used as

size declarators.

const int SIZE = 5;

int tests[SIZE];

This eases program maintenance when

the size of the array needs to be changed.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.2

Accessing Array Elements

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

Each element in an array is assigned a

unique subscript.

Subscripts start at 0

0 1 2 3 4

subscripts:

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

The last element’s subscript is n-1 where n

is the number of elements in the array.

0 1 2 3 4

subscripts:

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Array Elements

Array elements can be used as regular variables:

 tests[0] = 79;

 cout << tests[0];

 cin >> tests[1];

 tests[4] = tests[0] + tests[1];

Arrays must be accessed via individual

elements:

 cout << tests; // not legal

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

(Program Continues)

Accessing Array Elements in Program 7-1

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Here are the contents of the hours array, with the values

entered by the user in the example output:

Accessing Array Elements in Program 7-1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Accessing Array Contents

Can access element with a constant or

literal subscript:

 cout << tests[3] << endl;

Can use integer expression as subscript:

 int i = 5;

 cout << tests[i] << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using a Loop to Step Through

an Array
Example – The following code defines an
array, numbers, and assigns 99 to each
element:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

 numbers[count] = 99;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Closer Look At the Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Default Initialization

Global array  all elements initialized to 0

by default

Local array  all elements uninitialized by
default

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.3

No Bounds Checking in C++

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

No Bounds Checking in C++

When you use a value as an array

subscript, C++ does not check it to make

sure it is a valid subscript.

In other words, you can use subscripts

that are beyond the bounds of the array.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Code From Program 7-5

The following code defines a three-element

array, and then writes five values to it!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

What the Code Does

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

No Bounds Checking in C++

Be careful not to use invalid subscripts.

Doing so can corrupt other memory

locations, crash program, or lock up

computer, and cause elusive bugs.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Off-By-One Errors

An off-by-one error happens when you use
array subscripts that are off by one.

This can happen when you start subscripts
at 1 rather than 0:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)

 numbers[count] = 0;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.4

Array Initialization

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Initialization

Arrays can be initialized with an

initialization list:

const int SIZE = 5;

int tests[SIZE] = {79,82,91,77,84};

The values are stored in the array in the order

in which they appear in the list.

The initialization list cannot exceed the array

size.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Code From Program 7-6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Partial Array Initialization

If array is initialized with fewer initial

values than the size declarator, the
remaining elements will be set to 0:

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Implicit Array Sizing

Can determine array size by the size of

the initialization list:

 int quizzes[]={12,17,15,11};

Must use either array size declarator or

initialization list at array definition

12 17 15 11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.5

The Range-Based for Loop

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Range-Based for Loop

C++ 11 provides a specialized version of the for loop

that, in many circumstances, simplifies array

processing.

The range-based for loop is a loop that iterates once for

each element in an array.

Each time the loop iterates, it copies an element from the

array to a built-in variable, known as the range variable.

The range-based for loop automatically knows the

number of elements in an array.

You do not have to use a counter variable.

You do not have to worry about stepping outside the bounds of

the array.

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Range-Based for Loop

Here is the general format of the range-based for loop:

dataType is the data type of the range variable.

rangeVariable is the name of the range variable. This variable

will receive the value of a different array element during each

loop iteration.

array is the name of an array on which you wish the loop to

operate.

statement is a statement that executes during a loop iteration. If

you need to execute more than one statement in the loop, enclose

the statements in a set of braces.

for (dataType rangeVariable : array)

 statement;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The range-based for loop in Program 7-10

 // This program demonstrates the range-based for loop.

 #include <iostream>

 using namespace std;

 int main()

 {

 // Define an array of integers.

 int numbers[] = { 10, 20, 30, 40, 50 };

 // Display the values in the array.

 for (int val : numbers)

 cout << val << endl;

 return 0;

 }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Modifying an Array with a Range-
Based for Loop

As the range-based for loop executes, its

range variable contains only a copy of an array

element.

You cannot use a range-based for loop to

modify the contents of an array unless you

declare the range variable as a reference.

To declare the range variable as a reference
variable, simply write an ampersand (&) in front

of its name in the loop header.

Program 7-12 demonstrates

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

 const int SIZE = 5;

 int numbers[5];

 // Get values for the array.

 for (int &val : numbers)

 {

 cout << "Enter an integer value: ";

 cin >> val;

 }

 // Display the values in the array.

 cout << "Here are the values you entered:\n";

 for (int val : numbers)

 cout << val << endl;

Modifying an Array with a Range-
Based for Loop in Program 7-12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Modifying an Array with a
Range-Based for Loop

You can use the auto key word with a reference range variable. For

example, the code in lines 12 through 16 in Program 7-12 could have

been written like this:

 for (auto &val : numbers)

 {

 cout << "Enter an integer value: ";

 cin >> val;

 }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Range-Based for Loop

versus the Regular for Loop

The range-based for loop can be used in

any situation where you need to step

through the elements of an array, and you

do not need to use the element subscripts.

If you need the element subscript for some
purpose, use the regular for loop.

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.6

Processing Array Contents

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Processing Array Contents

Array elements can be treated as ordinary
variables of the same type as the array

When using ++, -- operators, don’t
confuse the element with the subscript:
 tests[i]++; // add 1 to tests[i]

 tests[i++]; // increment i, no

 // effect on tests

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Assignment

To copy one array to another,

Don’t try to assign one array to the other:

 newTests = tests; // Won't work

Instead, assign element-by-element:

 for (i = 0; i < ARRAY_SIZE; i++)

 newTests[i] = tests[i];

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an

Array

You can display the contents of a
character array by sending its name to
cout:

 char fName[] = "Henry";

cout << fName << endl;

But, this ONLY works with character arrays!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an

Array

For other types of arrays, you must print

element-by-element:

 for (i = 0; i < ARRAY_SIZE; i++)

 cout << tests[i] << endl;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Printing the Contents of an

Array
In C++ 11 you can use the range-based
for loop to display an array's contents, as

shown here:

 for (int val : numbers)

 cout << val << endl;

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing and Averaging

Array Elements

Use a simple loop to add together array
elements:
 int tnum;

 double average, sum = 0;

 for(tnum = 0; tnum < SIZE; tnum++)

 sum += tests[tnum];

Once summed, can compute average:
 average = sum / SIZE;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing and Averaging

Array Elements
In C++ 11 you can use the range-based
for loop, as shown here:

double total = 0; // Initialize accumulator

double average; // Will hold the average

for (int val : scores)

 total += val;

average = total / NUM_SCORES;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Finding the Highest Value in an

Array

int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] > highest)

 highest = numbers[count];

}

When this code is finished, the highest variable will contains the highest value

in the numbers array.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Finding the Lowest Value in an

Array

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] < lowest)

 lowest = numbers[count];

}

When this code is finished, the lowest variable will contains the lowest value in

the numbers array.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Partially-Filled Arrays

If it is unknown how much data an

array will be holding:

Make the array large enough to hold the

largest expected number of elements.

Use a counter variable to keep track of

the number of items stored in the array.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing Arrays

To compare two arrays, you must compare

element-by-element:

const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };

bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Compare the two arrays.

while (arraysEqual && count < SIZE)

{

 if (firstArray[count] != secondArray[count])

 arraysEqual = false;

 count++;

}

if (arraysEqual)

 cout << "The arrays are equal.\n";

else

 cout << "The arrays are not equal.\n";

8/23/2014

9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.7

Using Parallel Arrays

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Parallel Arrays

Parallel arrays: two or more arrays that

contain related data

A subscript is used to relate arrays:

elements at same subscript are related

Arrays may be of different types

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Parallel Array Example

 const int SIZE = 5; // Array size

 int id[SIZE]; // student ID

 double average[SIZE]; // course average

 char grade[SIZE]; // course grade

 ...

 for(int i = 0; i < SIZE; i++)
{

 cout << "Student ID: " << id[i]

 << " average: " << average[i]

 << " grade: " << grade[i]

 << endl;
}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

(Program Continues)

Parallel Arrays in Program 7-15

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Parallel Arrays in Program 7-15

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The hours and payRate arrays are related through their subscripts:

Parallel Arrays in Program 7-15

8/23/2014

10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.8

Arrays as Function Arguments

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Arrays as Function Arguments

To pass an array to a function, just use the array
name:
 showScores(tests);

To define a function that takes an array
parameter, use empty [] for array argument:
 void showScores(int []);

 // function prototype

 void showScores(int tests[])

 // function header

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Arrays as Function Arguments

When passing an array to a function, it is common
to pass array size so that function knows how many
elements to process:
 showScores(tests, ARRAY_SIZE);

Array size must also be reflected in prototype,
header:
void showScores(int [], int);

 // function prototype

void showScores(int tests[], int size)

 // function header

7-57

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

(Program Continues)

Passing an Array to a Function in Program 7-17

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Passing an Array to a Function in Program 7-17

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Modifying Arrays in Functions

Array names in functions are like

reference variables – changes made to

array in a function are reflected in actual

array in calling function

Need to exercise caution that array is not

inadvertently changed by a function

8/23/2014

11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.9

Two-Dimensional Arrays

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Two-Dimensional Arrays

Can define one array for multiple sets of
data

Like a table in a spreadsheet

Use two size declarators in definition:

 const int ROWS = 4, COLS = 3;
int exams[ROWS][COLS];

First declarator is number of rows;
second is number of columns

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Two-Dimensional Array

Representation

 const int ROWS = 4, COLS = 3; int
exams[ROWS][COLS];

Use two subscripts to access element:
exams[2][2] = 86;

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

columns

r
o
w
s

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Two-dimensional Array in Program 7-21

8/23/2014

12

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

2D Array Initialization

Two-dimensional arrays are initialized row-by-row:
const int ROWS = 2, COLS = 2;
int exams[ROWS][COLS] = { {84, 78},

 {92, 97} };

Can omit inner { }, some initial values in a row –

array elements without initial values will be set to 0

or NULL

84 78

92 97

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Two-Dimensional Array as

Parameter, Argument

Use array name as argument in function call:
 getExams(exams, 2);

Use empty [] for row, size declarator for column in

prototype, header:
const int COLS = 2;

// Prototype

void getExams(int [][COLS], int);

// Header

void getExams(int exams[][COLS], int rows)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example – The showArray

Function from Program 7-22

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

How showArray is Called

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing All the Elements in a

Two-Dimensional Array
Given the following definitions:

const int NUM_ROWS = 5; // Number of rows

const int NUM_COLS = 5; // Number of columns

int total = 0; // Accumulator

int numbers[NUM_ROWS][NUM_COLS] =

 {{2, 7, 9, 6, 4},

 {6, 1, 8, 9, 4},

 {4, 3, 7, 2, 9},

 {9, 9, 0, 3, 1},

 {6, 2, 7, 4, 1}};

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing All the Elements in a

Two-Dimensional Array

// Sum the array elements.

for (int row = 0; row < NUM_ROWS; row++)

{

 for (int col = 0; col < NUM_COLS; col++)

 total += numbers[row][col];

}

// Display the sum.

cout << "The total is " << total << endl;

8/23/2014

13

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing the Rows of a

Two-Dimensional Array
Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

 {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},

 {82, 73, 77, 82, 89}};

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing the Rows of a

Two-Dimensional Array
// Get each student's average score.

for (int row = 0; row < NUM_STUDENTS; row++)

{

 // Set the accumulator.

 total = 0;

 // Sum a row.

 for (int col = 0; col < NUM_SCORES; col++)

 total += scores[row][col];

 // Get the average

 average = total / NUM_SCORES;

 // Display the average.

 cout << "Score average for student "

 << (row + 1) << " is " << average <<endl;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing the Columns of a

Two-Dimensional Array
Given the following definitions:

const int NUM_STUDENTS = 3;

const int NUM_SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM_STUDENTS][NUM_SCORES] =

 {{88, 97, 79, 86, 94},

 {86, 91, 78, 79, 84},

 {82, 73, 77, 82, 89}};

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Summing the Columns of a

Two-Dimensional Array
// Get the class average for each score.

for (int col = 0; col < NUM_SCORES; col++)

{

 // Reset the accumulator.

 total = 0;

 // Sum a column

 for (int row = 0; row < NUM_STUDENTS; row++)

 total += scores[row][col];

 // Get the average

 average = total / NUM_STUDENTS;

 // Display the class average.

 cout << "Class average for test " << (col + 1)

 << " is " << average << endl;

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.10

Arrays with Three or More

Dimensions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Arrays with Three or More

Dimensions

Can define arrays with any number of

dimensions:

 short rectSolid[2][3][5];

 double timeGrid[3][4][3][4];

When used as parameter, specify all but

1st dimension in prototype, heading:

 void getRectSolid(short [][3][5]);

8/23/2014

14

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

7.12

Introduction to the STL vector

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Introduction to the STL vector

A data type defined in the Standard
Template Library (covered more in Chapter
16)

Can hold values of any type:
 vector<int> scores;

Automatically adds space as more is
needed – no need to determine size at
definition

Can use [] to access elements

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Declaring Vectors

You must #include<vector>

Declare a vector to hold int element:
 vector<int> scores;

Declare a vector with initial size 30:
 vector<int> scores(30);

Declare a vector and initialize all elements to 0:
 vector<int> scores(30, 0);

Declare a vector initialized to size and contents
of another vector:
 vector<int> finals(scores);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Adding Elements to a Vector

If you are using C++ 11, you can initialize a vector with a

list of values:

 vector<int> numbers { 10, 20, 30, 40 };

Use push_back member function to add element to a

full array or to an array that had no defined size:

 scores.push_back(75);

Use size member function to determine size of a

vector:

 howbig = scores.size();

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Removing Vector Elements

Use pop_back member function to remove last
element from vector:
 scores.pop_back();

To remove all contents of vector, use clear
member function:
 scores.clear();

To determine if vector is empty, use empty
member function:
 while (!scores.empty()) ...

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using the Range-Based for Loop with a vector in C++ 11

8/23/2014

15

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Other Useful Member Functions

Member
Function

Description

Example

at(elt) Returns the value of the element at
position elt in the vector

cout <<
 vec1.at(i);

capacity() Returns the maximum number of
elements a vector can store without
allocating more memory

maxelts =
 vec1.capacity();

reverse() Reverse the order of the elements
in a vector

vec1.reverse();

resize
(elts,val)

Add elements to a vector,
optionally initializes them

vec1.resize(5,0);

swap(vec2) Exchange the contents of two
vectors

vec1.swap(vec2);

