
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 8:

Searching and

Sorting Arrays

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8.1

Introduction to Search Algorithms

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Introduction to Search

Algorithms

Search: locate an item in a list of

information

Two algorithms we will examine:

Linear search

Binary search

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Linear Search

Also called the sequential search

Starting at the first element, this algorithm

sequentially steps through an array

examining each element until it locates the

value it is searching for.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Linear Search - Example

Array numlist contains:

Searching for the the value 11, linear search
examines 17, 23, 5, and 11

Searching for the the value 7, linear search
examines 17, 23, 5, 11, 2, 29, and 3

17 23 5 11 2 29 3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Linear Search

Algorithm:

 set found to false; set position to –1; set index to 0

 while index < number of elts. and found is false

 if list[index] is equal to search value

 found = true

 position = index

 end if

 add 1 to index

 end while

 return position

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Linear Search Function

int searchList(int list[], int numElems, int value)

{

 int index = 0; // Used as a subscript to search array

 int position = -1; // To record position of search value

 bool found = false; // Flag to indicate if value was found

 while (index < numElems && !found)

 {

 if (list[index] == value) // If the value is found

 {

 found = true; // Set the flag

 position = index; // Record the value's subscript

 }

 index++; // Go to the next element

 }

return position; // Return the position, or -1

}

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Linear Search - Tradeoffs

Benefits:

Easy algorithm to understand

Array can be in any order

Disadvantages:

Inefficient (slow): for array of N elements,

examines N/2 elements on average for value

in array, N elements for value not in array

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Binary Search

 Requires array elements to be in order

1. Divides the array into three sections:
middle element

elements on one side of the middle element

elements on the other side of the middle element

2. If the middle element is the correct value, done.
Otherwise, go to step 1. using only the half of the
array that may contain the correct value.

3. Continue steps 1. and 2. until either the value is
found or there are no more elements to examine

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Binary Search - Example

Array numlist2 contains:

Searching for the the value 11, binary
search examines 11 and stops

Searching for the the value 7, linear
search examines 11, 3, 5, and stops

2 3 5 11 17 23 29

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Binary Search

Set first index to 0.

Set last index to the last subscript in the array.

Set found to false.

Set position to -1.

While found is not true and first is less than or equal to last

 Set middle to the subscript half-way between array[first] and array[last].

 If array[middle] equals the desired value

 Set found to true.

 Set position to middle.

 Else If array[middle] is greater than the desired value

 Set last to middle - 1.

 Else

 Set first to middle + 1.

 End If.

End While.

Return position.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Binary Search Function

int binarySearch(int array[], int size, int value)

{

 int first = 0, // First array element

 last = size - 1, // Last array element

 middle, // Mid point of search

 position = -1; // Position of search value

 bool found = false; // Flag

 while (!found && first <= last)

 {

 middle = (first + last) / 2; // Calculate mid point

 if (array[middle] == value) // If value is found at mid

 {

 found = true;

 position = middle;

 }

 else if (array[middle] > value) // If value is in lower half

 last = middle - 1;

 else

 first = middle + 1; // If value is in upper half

 }

 return position;

}

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Binary Search - Tradeoffs

Benefits:

Much more efficient than linear search. For

array of N elements, performs at most log2N

comparisons

Disadvantages:

Requires that array elements be sorted

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8.3

Introduction to Sorting Algorithms

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Introduction to Sorting

Algorithms
Sort: arrange values into an order:

Alphabetical

Ascending numeric

Descending numeric

Two algorithms considered here:

Bubble sort

Selection sort

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Bubble Sort

Concept:

Compare 1st two elements

If out of order, exchange them to put in order

Move down one element, compare 2nd and 3rd

elements, exchange if necessary. Continue until end

of array.

Pass through array again, exchanging as necessary

Repeat until pass made with no exchanges

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example – First Pass

Array numlist3 contains:

17 23 5 11

compare values
17 and 23 – in correct
order, so no exchange

compare values 23 and
5 – not in correct order,
so exchange them

compare values 23 and
11 – not in correct order,
so exchange them

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example – Second Pass

After first pass, array numlist3 contains:

17 5 11 23

compare values 17 and
5 – not in correct order,
so exchange them

compare values 17 and
11 – not in correct order,
so exchange them

compare values 17 and
23 – in correct order,
so no exchange

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example – Third Pass

After second pass, array numlist3 contains:

5 11 17 23

compare values 5 and
11 – in correct order,
so no exchange

compare values 11 and
17 – in correct order,
so no exchange

compare values 17 and
23 – in correct order,
so no exchange

No exchanges, so

array is in order

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Bubble Sort Function –

From Program 8-4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Bubble Sort - Tradeoffs

Benefit:

Easy to understand and implement

Disadvantage:

Inefficient: slow for large arrays

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Selection Sort

Concept for sort in ascending order:

Locate smallest element in array. Exchange it

with element in position 0

Locate next smallest element in array.

Exchange it with element in position 1.

Continue until all elements are arranged in

order

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Selection Sort - Example

 Array numlist contains:

1. Smallest element is 2. Exchange 2 with

element in 1st position in array:

11 2 29 3

2 11 29 3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example (Continued)

2. Next smallest element is 3. Exchange 3 with

element in 2nd position in array:

3. Next smallest element is 11. Exchange 11

with element in 3rd position in array:

2 3 29 11

2 3 11 29

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Selection Sort Function –

From Program 8-5
35 void selectionSort(int array[], int size)

36 {

37 int startScan, minIndex, minValue;

38

39 for (startScan = 0; startScan < (size - 1); startScan++)

40 {

41 minIndex = startScan;

42 minValue = array[startScan];

43 for(int index = startScan + 1; index < size; index++)

44 {

45 if (array[index] < minValue)

46 {

47 minValue = array[index];

48 minIndex = index;

49 }

50 }

51 array[minIndex] = array[startScan];

52 array[startScan] = minValue;

53 }

54 }

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Selection Sort - Tradeoffs

Benefit:

More efficient than Bubble Sort, since fewer

exchanges

Disadvantage:

May not be as easy as Bubble Sort to

understand

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

8.5

Sorting and Searching Vectors

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Sorting and Searching Vectors

Sorting and searching algorithms can be

applied to vectors as well as arrays

Need slight modifications to functions to

use vector arguments:

vector <type> & used in prototype

No need to indicate vector size – functions
can use size member function to calculate

