8/23/2014

e

From Control Structures

Ch apter 9 . through Objects
Pointers 4877
é(:ﬁ" o
!mtﬂ . 5
paed Lot 5

TONY GADDIS

9.1

Getting the Address of a Variable

L
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Getting the Address of a
Variable

@ Each variable in program is stored at a
unique address
@ Use address operator & to get address of
a variable:
int num = -99;
cout << g&num; // prints address

// in hexadecimal

L
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

9.2

Pointer Variables

L
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointer Variables

© Pointer variable : Often just called a
pointer, it's a variable that holds an
address

© Because a pointer variable holds the
address of another piece of data, it "points"
to the data

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Something Like Pointers: Arrays

© We have already worked with something similar
to pointers, when we learned to pass arrays as
arguments to functions.

© For example, suppose we use this statement to
pass the array numbers to the showValues
function:

showValues (numbers, SIZE);

AddisonWesloy
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Something Like Pointers : Arrays

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Something Like Pointers:
Reference Variables

2 We have also worked with something like pointers
when we learned to use reference variables.
Suppose we have this function:

void getOrder (int &donuts)

{
cout << "How many doughnuts do you want? ";
cin >> donuts;

}

& And we call it with this code:
int jellyDonuts;
getOrder (jellyDonuts) ;

‘Addison-Wesloy
se of

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Something Like Pointers:
Reference Variables

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

o Pointer variables are yet another way using a
memory address to work with a piece of data.

o Pointers are more "low-level" than arrays and
reference variables.

@ This means you are responsible for finding the
address you want to store in the pointer and
correctly using it.

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointer Variables

@ Definition:
int *intptr;
“Read as:
“intptr can hold the address of an int”
% Spacing in definition does not matter:
int * intptr; // same as above

int* intptr; // same as above

‘Addisan-Wesley
ce ol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointer Variables

& Assigning an address to a pointer variable:
int *intptr;
intptr = &num;

2 Memory layout:

num intptr

address of num: 0x4a00

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Pointer Variables

@ Initialize pointer variables with the special
value nullptr.

@In C++ 11, the nullptr key word was
introduced to represent the address 0.

©Here is an example of how you define a

pointer variable and initialize it with the
value nullptr:

int *ptr = nullptr;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

A Pointer Variable in Program 9-2

Program 9-2

// This program stores the address of a variable in a pointer.
#tinclude <iostream>
using namespace std;

int main()
{

int x = 25; // int variable
int *ptr = nullptr; // Pointer variable, can point to an int
ptr = &x; // store the address of x in ptr

cout << "The value in x is " << x << endl;

cout << "The address of x is " << ptr << endl;
return 0;

Program Output
The value in x is 25
The address of x is 0x7e00

Addi

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Wesley
of

The Indirection Operator

©The indirection operator (*) dereferences
a pointer.

1t allows you to access the item that the
pointer points to.

int x = 25;
int *intptr = &x;
cout << *intptr << endl;

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

The Indirection Operator in Program 9-3

Program 9.3

int x = 25;
int *ptr = nullper;

ptr = &x; /! Store the a

// Use both x and per to display the value in x.
cout << "Here is the value in x, printed twice:\n";
cout << x << endl;  //

cout << *ptr << endl; // Dis

// Rssign 100 to the location pointed to by ptr. This
// will actually assign 100 to x.
*ptr = 100;

(program continues)

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The Indirection Operator in Program 9-3

Program 9-3 (continued)

// Displays the cont
: // Displays the contents of x

Program Output

Here is the value in x, printed twice:
25

25

Once again, here is the value in x:
100

100

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Cit..

L5,

9.3

The Relationship Between Arrays
and Pointers

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

The Relationship Between
Arrays and Pointers

© Array name is starting address of array
int vals[] = {4, 7, 11};

ERERER

starting address of vals: 0x4a00
// displays

// 0x4a00
// displays 4

cout << vals;

cout << vals[0];

@ Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

The Relationship Between
Arrays and Pointers

© Array name can be used as a pointer
constant:
int vals[] = {4, 7, 11};
cout << *vals; // displays 4
© Pointer can be used as an array name:
int *valptr = vals;
cout << valptr[l]; // displays 7

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

The Array Name Being Dereferenced in Program 9-5

Program 9-5

// This program shows an array name being dereferenced with the *
// operator.

¢include <iostream>

using namespace std;

int main()
i
short mumbers[] = {10, 20, 30, 40, 50};

cout << "The first element of the array is ";
cout << *numbers << endl;
return 0;

i

Program Output
The first element of the array is 10

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;
valptr = vals;
Whatis valptr + 1? It means (address in
valptr) + (1 * size of an int)
cout << *(valptr+l); //displays 7
cout << *(valptr+2); //displays 11

Must use ( ) as shown in the expressions

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Array Access

© Array elements can be accessed in many ways:

Array access method Example
array name and [] vals[2] = 17;
pointer to array and [] valptr[2] = 17;
array name and subscript *(vals + 2) = 17;
arithmetic
pointer to array and *(valptr + 2) = 17;

subscript arithmetic

‘Addisan-Wesley
senimprintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Array Access

@ Conversion: vals[i] is equivalent to
*(vals + 1)

© No bounds checking performed on array
access, whether using array name or a
pointer

‘Addisan-Wesley
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

From Program 9-7

- 9.4

Pointer Arithmetic

cout. <<
Program Gutput
Bere are the values in the ceins array:
.05 0.1 0.25 0.5 1

And nere they are again:

.05 0.1 0.25 0.5 1

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointer Arithmetic From Pﬁrog»ram 9-9

© Operations on pointer variables:

Operation Example
int vals[]={4,7,11};
int *valptr = vals;

++, -- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer valptr = vals; // points at 4 at numper <
and int) valptr += 2; // points at 11 )

- (pointer from pointer) cout << valptr-val; // difference
// (number of ints) between valptr Program Output

// and val The nusbers in set are:
510 15 20 25 30 35 40

The numbers in ses backward are:

AMImn»w::I:Iy ‘dd[’dﬂ-"‘;:':]v 40 35 30 25 20 15 10 5

-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addi

Initializing Pointers

@ Can initialize at definition time:
int num, *numptr = &num;
9_5 int val[3], *valptr = val;
© Cannot mix data types:
double cost;
Initializing Pointers int *ptr = &cost; // won't work
@ Can test for an invalid address for pt r with:
if (!ptr) ...

‘Addisan-Wesley ‘Addisan-Wesley
senimpintol seninpintol

 Publishing as Addison-Wesley All rights reserved. m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Copyright © 2015, 2012, 2009 Pearson Education, |




8/23/2014

9.6

Comparing Pointers

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Comparing Pointers

© Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

© Comparing addresses in pointers is not
the same as comparing contents pointed

at by pointers:
if (ptrl == ptr2) // compares
// addresses
if (*ptrl == *ptr2) // compares
// contents

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

9.7

Pointers as Function Parameters

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Pointers as Function
Parameters

@ A pointer can be a parameter
© Works like reference variable to allow change to
argument from within function
@ Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int
2) asterisk * in body to dereference the pointer
cin >> *ptr;
3) address as argument to the function
getNum (&num) ; // pass address of num to getNum

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Example
void swap (int *x, int *y)
{ int temp;
temp = *x;
*x = *y;
*y = temp;
}
int numl = 2, num2 = -3;

swap (&numl, &num2);

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointers as Function Parameters in Program 9-11

Program 9-11

&5 two functions that accept addresses of

stream>
uEing namespace sto

ction

/4 Call gethumber and pass the address of number

/1 call d alue and pass the address of number.
dou

AddisanWesl )
sanimpiniol (Program Continues)

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Pointers as Function Parameters in Program 9-11

Program 911

10 [Enter]

seninpintof .
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Pointers to Constants

@ If we want to store the address of a
constant in a pointer, then we need to
store it in a pointer-to-const.

s of
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Pointers to Constants

2 Example: Suppose we have the following
definitions:

const int SIZE = 6;
const double payRates[SIZE] =
{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };

©1n this code, payRates is an array of
constant doubles.

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Pointers to Constants

© Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
it.

void displayPayRates (const double *rates, int size)
{
for (int count = 0; count < size; count++)
{
cout << "Pay rate for employee " << (count + 1)
<< " is $" << *(rates + count) << endl;

}

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Declaration of a Pointer to
Constant

The asterisk indicates that
rates is a pointer.

const double, *rates

This is what rates points to.

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Constant Pointers

© A constant pointer is a pointer that is
initialized with an address, and cannot
point to anything else.

@ Example
int value = 22;
int * const ptr = &value;

seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Constant Pointers

* const indicates that
ptr is a constant pointer.

int * const ptr

This is what ptr points to.

seninpintof
m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Constant Pointers to Constants

© A constant pointer to a constant is:
©a pointer that points to a constant

©a pointer that cannot point to anything except
what it is pointing to

o Example:
int value = 22;
const int * const ptr = &value;

s of
m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Constant Pointers to Constants

* const indicates that
ptr is a constant pointer.

const int, * const ptr

This is what ptr points to.

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

9.8

Dynamic Memory Allocation

‘Addisan-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation

© Can allocate storage for a variable while
program is running

@ Computer returns address of newly
allocated variable
@ Uses new operator to allocate memory:
double *dptr = nullptr;
dptr = new double;
@ new returns address of memory location

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation

o Can also use new to allocate array:
const int SIZE = 25;
arrayPtr = new double[SIZE];
© Canthen use [] or pointer arithmetic to access array:
for(i = 0; 1 < SIZE; i++)
*arrayptr([i] = i * i;
or
for(i = 0; i < SIZE; i++)
* (arrayptr + i) =1 * i;
© Program will terminate if not enough memory available to
allocate

‘Addisan-Wesley
seninpintol

@ Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

Releasing Dynamic Memory

“Use delete to free dynamic memory:
delete fptr;

@ Use [] to free dynamic array:
delete [] arrayptr;

©0nly use delete with dynamic memory!

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

Dynamic Memory Allocation in Program 9-14

Program 9-14

// This program totals and averages the sales figures for any
// number of days. The figures are stored in a dynamically
// allocated array.
tinclude <iostream>

nclude <iomanip>
namespace std;

int main()

double *sales - nullptr, // To dynamically allocate an array
0.0, // Accumulator
// To hold average sales
// To hold the number of days of sales
/! Counter variable

// Get the number of days of sales.

cout << "How many days of sales figures do you wish ";
cout << "to process? -;

cin >> numDays;

‘Addison-Wesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

Dynamic Memory Allocation in Program 9-14

/4 Dyramieally allocate an array large emough to held
/4 that many days of sales amounts.
sales = new double[numbays|;

ales figures for each day.
er the sales figures below.
0; count < numDays; count+

o

cout << "Day * << {(coumt + 1) =€ *: *;
cin 3> sales{count];

}

/4 Caleulate the total sales
For (count = 0; count < nuaDays; Gount++)
{

total +- sales[count];

}

/4 Caleulate the average sales per day
average = toral / numDays;

1/ Display the results
cout << £ixed << showpol
cout << "\n\nTotal S
cout << "Average Sales

<< average << endl;

Program 9-14 (Continued)

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation in Program 9-14

Program 9-14 (Continued)

dynamically allocated mesor:

sales;

retura 0;

Program Output with Example Input Shown In Bold
How many days of sales figures do you wish to process? S [Enter]
Enter the sales figures bel
Day 1: B98.63 [Enter]
Day 2: 652.32 [Enter]
Day 3: 741.85 [Enter]
y 4: 852.96 [Enter]
Day 5: 921.37 [Enter]
Total Sales: $6067.13
Average Sales: §813.43

Notice that in line 49 is assigned to the

pointer. The te operator is designed to have no
aisanwestey  €ffect when used on a null pointer.

seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

9.9

Returning Pointers from Functions

‘Addisan-Wesley
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

Returning Pointers from

Functions
© Pointer can be the return type of a function:

int* newNum() ;
© The function must not return a pointer to a local
variable in the function.
© A function should only return a pointer:

© to data that was passed to the function as an
argument, or
© to dynamically allocated memory

AddisonWesloy
seninpintol

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.




8/23/2014

From Program 9-15

int *getRandomNumbers(int num)

int *3

nullptr; // Array to hold

// Return a null pointer if num is zero or negative.
1 (num <= 0)
return nullptr;

// Dynamically allocate the array.
arr - new int{num];

// Seed the random number gemerator by passing
urn value of time(0) to srand.

e the array with random numbers.

ount = 0; count < num; count++)
arrfcount] = rand();

// Return a pointer to the array.

return arr;

‘Addisan-Wesloy
senimpintol

m Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley Al rights reserved.

P

9.10

Using Smart Pointers to Avoid
Memory Leaks

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All righs reserved.

‘Addison-Wesloy
senimpintof

Using Smart Pointers to Avoid
Memory Leaks

© In C++ 11, you can use smart pointers to dynamically
allocate memory and not worry about deleting the
memory when you are finished using it.

© Three types of smart pointer:

unique ptr
shared ptr
weak ptr

© Must #include the memory header file:

#include <memory>

© In this book, we introduce unique ptr:

unique_ptr<int> ptr( new int );

Copyright © 2015, 2012, 2009 Pearson Education. Inc., Publishing as Addison-Wesley All rights reserved.

Using Smart Pointers to Avoid
Memory Leaks

Figure 912

Name of the pointer
unique_ptr<int> ptr( new imt );

Data typa that the pointer Expression thal dynamically
wil point to allocates the memory

© The notation <int> indicates that the pointer can point to an int .

The name of the pointer is ptr .

@ The expression new int allocates a chunk of memory to hold an
int.

© The address of the chunk of memory will be assigned to ptr.

Using Smart Pointers in Program 9-17

Program 9-17

y the value of the dynamically allocated int.
ptr << endl;

)

Program Output
"

Addisan-Wesley
senirpintal

m Copyright © 2015, 2012, 2009 Pearson Education, Inc. Publishing as Addison-Wesley All rights reserved.

m Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley Al rights reserved.

10



