
8/23/2014

1

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Chapter 9:

Pointers

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.1

Getting the Address of a Variable

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Getting the Address of a

Variable
Each variable in program is stored at a

unique address

Use address operator & to get address of

a variable:

 int num = -99;

 cout << # // prints address

 // in hexadecimal

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.2

Pointer Variables

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

Pointer variable : Often just called a
pointer, it's a variable that holds an
address

Because a pointer variable holds the
address of another piece of data, it "points"
to the data

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Something Like Pointers: Arrays

We have already worked with something similar
to pointers, when we learned to pass arrays as
arguments to functions.

For example, suppose we use this statement to
pass the array numbers to the showValues
function:

showValues(numbers, SIZE);

8/23/2014

2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Something Like Pointers : Arrays

The values parameter, in the showValues

function, points to the numbers array.

C++ automatically stores
the address of numbers in

the values parameter.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Something Like Pointers:

Reference Variables

We have also worked with something like pointers
when we learned to use reference variables.
Suppose we have this function:

void getOrder(int &donuts)

{

 cout << "How many doughnuts do you want? ";

 cin >> donuts;

}

And we call it with this code:
int jellyDonuts;

getOrder(jellyDonuts);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Something Like Pointers:

Reference Variables

The donuts parameter, in the getOrder function,

points to the jellyDonuts variable.

C++ automatically stores

the address of
jellyDonuts in the

donuts parameter.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

Pointer variables are yet another way using a

memory address to work with a piece of data.

Pointers are more "low-level" than arrays and

reference variables.

This means you are responsible for finding the

address you want to store in the pointer and

correctly using it.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

Definition:

 int *intptr;

Read as:

 “intptr can hold the address of an int”

Spacing in definition does not matter:

 int * intptr; // same as above

 int* intptr; // same as above

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

Assigning an address to a pointer variable:
int *intptr;

intptr = #

Memory layout:

num intptr

25 0x4a00

address of num: 0x4a00

8/23/2014

3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Variables

Initialize pointer variables with the special
value nullptr.

In C++ 11, the nullptr key word was

introduced to represent the address 0.

Here is an example of how you define a

pointer variable and initialize it with the
value nullptr:

 int *ptr = nullptr;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

A Pointer Variable in Program 9-2

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Indirection Operator

The indirection operator (*) dereferences

a pointer.

It allows you to access the item that the

pointer points to.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

This prints 25.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Indirection Operator in Program 9-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Indirection Operator in Program 9-3

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.3

The Relationship Between Arrays

and Pointers

8/23/2014

4

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Relationship Between

Arrays and Pointers

Array name is starting address of array

 int vals[] = {4, 7, 11};

 cout << vals; // displays

 // 0x4a00

 cout << vals[0]; // displays 4

4 7 11

starting address of vals: 0x4a00

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Relationship Between

Arrays and Pointers
Array name can be used as a pointer

constant:

 int vals[] = {4, 7, 11};

 cout << *vals; // displays 4

Pointer can be used as an array name:

 int *valptr = vals;

 cout << valptr[1]; // displays 7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

The Array Name Being Dereferenced in Program 9-5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;

valptr = vals;

What is valptr + 1? It means (address in

valptr) + (1 * size of an int)

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Access

Array elements can be accessed in many ways:

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and subscript

arithmetic

*(vals + 2) = 17;

pointer to array and

subscript arithmetic

*(valptr + 2) = 17;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Array Access

Conversion: vals[i] is equivalent to

*(vals + i)

No bounds checking performed on array

access, whether using array name or a

pointer

8/23/2014

5

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

From Program 9-7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.4

Pointer Arithmetic

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointer Arithmetic

Operations on pointer variables:

Operation Example
int vals[]={4,7,11};

int *valptr = vals;

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer
and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

From Program 9-9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.5

Initializing Pointers

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Initializing Pointers

Can initialize at definition time:
 int num, *numptr = #

 int val[3], *valptr = val;

Cannot mix data types:
 double cost;

 int *ptr = &cost; // won’t work

Can test for an invalid address for ptr with:

 if (!ptr) ...

8/23/2014

6

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.6

Comparing Pointers

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Comparing Pointers

Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

Comparing addresses in pointers is not
the same as comparing contents pointed
at by pointers:
 if (ptr1 == ptr2) // compares

 // addresses

 if (*ptr1 == *ptr2) // compares

 // contents

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.7

Pointers as Function Parameters

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers as Function

Parameters

A pointer can be a parameter

Works like reference variable to allow change to
argument from within function

Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer

 cin >> *ptr;

3) address as argument to the function
getNum(&num); // pass address of num to getNum

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Example

void swap(int *x, int *y)

{ int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

(Program Continues)

Pointers as Function Parameters in Program 9-11

8/23/2014

7

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers as Function Parameters in Program 9-11

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers to Constants

If we want to store the address of a

constant in a pointer, then we need to

store it in a pointer-to-const.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers to Constants

Example: Suppose we have the following
definitions:

const int SIZE = 6;

const double payRates[SIZE] =

 { 18.55, 17.45, 12.85,

 14.97, 10.35, 18.89 };

In this code, payRates is an array of
constant doubles.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Pointers to Constants

Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
it.

void displayPayRates(const double *rates, int size)

{

 for (int count = 0; count < size; count++)

 {

 cout << "Pay rate for employee " << (count + 1)

 << " is $" << *(rates + count) << endl;

 }

}

The parameter, rates, is a pointer to const double.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Declaration of a Pointer to

Constant

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Constant Pointers

A constant pointer is a pointer that is

initialized with an address, and cannot

point to anything else.

Example

int value = 22;

int * const ptr = &value;

8/23/2014

8

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Constant Pointers

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Constant Pointers to Constants

A constant pointer to a constant is:

a pointer that points to a constant

a pointer that cannot point to anything except
what it is pointing to

Example:
int value = 22;

const int * const ptr = &value;

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Constant Pointers to Constants

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.8

Dynamic Memory Allocation

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation

Can allocate storage for a variable while
program is running

Computer returns address of newly
allocated variable

Uses new operator to allocate memory:

 double *dptr = nullptr;

 dptr = new double;

new returns address of memory location

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation

Can also use new to allocate array:
const int SIZE = 25;

arrayPtr = new double[SIZE];

Can then use [] or pointer arithmetic to access array:
 for(i = 0; i < SIZE; i++)

 *arrayptr[i] = i * i;

or

 for(i = 0; i < SIZE; i++)

 *(arrayptr + i) = i * i;

Program will terminate if not enough memory available to
allocate

8/23/2014

9

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Releasing Dynamic Memory

Use delete to free dynamic memory:

 delete fptr;

Use [] to free dynamic array:

 delete [] arrayptr;

Only use delete with dynamic memory!

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation in Program 9-14

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Dynamic Memory Allocation in Program 9-14

Program 9-14 (Continued)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Notice that in line 49 nullptr is assigned to the sales

pointer. The delete operator is designed to have no

effect when used on a null pointer.

Dynamic Memory Allocation in Program 9-14

Program 9-14 (Continued)

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.9

Returning Pointers from Functions

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Returning Pointers from

Functions
Pointer can be the return type of a function:
 int* newNum();

The function must not return a pointer to a local
variable in the function.

A function should only return a pointer:

to data that was passed to the function as an
argument, or

to dynamically allocated memory

8/23/2014

10

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

From Program 9-15

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

9.10

Using Smart Pointers to Avoid

Memory Leaks

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Smart Pointers to Avoid

Memory Leaks
In C++ 11, you can use smart pointers to dynamically

allocate memory and not worry about deleting the

memory when you are finished using it.

Three types of smart pointer:

Must #include the memory header file:

In this book, we introduce unique_ptr:

unique_ptr

shared_ptr
weak_ptr

#include <memory>

unique_ptr<int> ptr(new int);

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Smart Pointers to Avoid

Memory Leaks

The notation <int> indicates that the pointer can point to an int .

The name of the pointer is ptr .

The expression new int allocates a chunk of memory to hold an

int.

The address of the chunk of memory will be assigned to ptr.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., Publishing as Addison-Wesley All rights reserved.

Using Smart Pointers in Program 9-17

