CST 180 Syllabus

CST 180

C++ Programming
Instructor: Dr. Don Southwell
General Info:
Office Location: A071

Telephone: 989 686-9137

Fax: 989 686-8736

E-mail:
donaldsouthwell@delta.edu

Instructor Website: http://websites.delta.edu/donaldsouthwell/
Office Hours: See class/office schedule at: http://websites.delta.edu/donaldsouthwell/academic_schedule.htm
· Students should make appointments to see the instructor at least 24 hours in advance. Appointments take precedence over walk-in visits and are recommended.

· To effectively document questions and responses, email communications is preferred. The use of Delta’s email service is REQUIRED for sending and receiving class correspondence. Due to spam filter settings, instructor is not responsible for receiving email from other providers.

Course Description: Prerequisite: CST 173 or CST 177 or permission of instructor. Uses the C++ language to solve software problems. Develops solutions to computing problems through algorithm design, development, implementation, and testing. Includes control structures, arrays, files, strings, pointers, and fundamental object-oriented programming. Credit may be earned in CST 180 or CST 181 but not both. (45-0)
	Outcomes and Objectives for: CST 180 - C++ Programming

Upon successful completion of this course, the student will be able to:

	Design software solutions for a variety of problems.
Objectives:

A. Create a logic plan to map design of a software solution.

B. Read and interpret algorithms represented in pseudocode or flowchart form.

C. Interpret requirements and specifications for a software problem to initiate accruate design of a computer program.

D. Construct program code to implement program design specifications.

Demonstrate computer literacy skills to successfully use software development environments.
Objectives:

A. Utilize an integrated development environment to create a project workspace.

B. Enter and edit C++ source code using a text editor.

C. Manage multiple project, data, and source code files.

D. Use a compiler to check program diagnostics and correct syntax errors.

E. Implement a software application on more than one operating system.

Apply basic structuring concepts of C++ to build working programs.
Objectives:

A. Describe the basic program format and structure of a C++ program.

B. Describe and accurately apply rules for variable and identifier naming in C++.

C. Define and apply C++ primitive data types including the integer and floating point data type families.

D. Describe results and potential side effects for using mixed data type operations.

E. Effectively use and distinguish between variables and constants.

F. Define the uses and value of global constants.

G. Recognize usage of preprocessor directives and header files for required functionality.

H. Implement user-friendly console input and output with C++ programs.

I. Format program output using appropriate console formatting manipulators.

J. Describe C++ arithmetic operators including operator precedence and associativity.

K. Distinguish between operands and unary, binary, and tertiary operators.

L. Apply C++ arithmetic operators to build and evaluate arithmetic expressions.

M. Define issues with integer and floating-point division.

N. Convert basic mathematical formulas to C++ arithmetic expressions.

O. Utilize standard C++ function library including math and string functions.

P. Define and utilize the C++ Boolean data type for logical operations.

Q. Describe C++ relational operators and use them to construct relational expressions.

R. Describe C++ logical operators (AND, OR, NOT) including their truth tables.

S. Apply C++ logical operators to construct compound logical expressions.

T. Build selection statements with appropriate C++ if/else/switch constructs.

U. Define the most appropriate use of while, do/while, and for loops.

V. Build repetition statements with C++ to construct iterative algorithms.

W. Define and apply the basic random number generation feature available in C++.

Design modular programming solutions.
Objectives:

A. Implement programming problem sub-tasks into user-defined functions.

B. Describe rules for C++ function implementation including the use of prototypes.

C. Distinguish between void and value-return functions and correctly design functions using both.

D. Distinguish between value and reference parameters and define the uses and restrictions of using both.

E. Effectively pass value and reference parameters to and from functions.

F. Distinguish between global and local variables and define variable scope.

G. Define the value and purpose of separation of user-defined function specifications and implementations into multi-file projects.

H. Implement functions using separate specification (.h) and implementation (.cpp) files.

Use data organization techniques.
Objectives:

A. Allocate arrays and properly define index ranges for array processing.

B. Describe the risks and precaurtions necessary for safe array processing.

C. Process data elements of an array using looping algorithms.

D. Describe use of arrays for basic list processing algorithms.

E. Describe fundamental searching algorithms including the linear search and binary search.

F. Describe and apply fundamental sorting algorithms.

G. Desing and implement algorithms to process two-dimensional arrays using nested for-loops.

Build software solutions that apply input/output features.
Objectives:

A. Open, read, process, and close a sequential text input file stream.

B. Utilize loops to read and process the contents of a text file.

C. Write program output to a text output file.

D. Compare and contrast text files with binary files.

E. Compare and contrast sequential access files with direct access files.

F. Allocate pointer variables and access data using indirection.

G. Perform basic pointer operations including assignment, address-of, and dereferencing.

H. Pass pointers to and from functions.

I. Apply C++ pointers for dynamic data allocation with appropriate use of keywords "new" and "delete."

J. Desing and implement solutions using record structures.

K. Correctly utilize a record structure including use of member selections of record fields.

L. Pass record structures to and from functions.

M. Allocate C++ character strings and manipulate strings using string character array processing.

N. Utilize standard C++ string functions to assign, compare, and concatenate strings.

O. Apply string functions and methods to solve character string manipulation problems.

Build software solutions that apply fundamental object-oriented programming concepts.
Objectives:

A. Define and discuss the object-oriented approach to programming.

B. Recognize specific terminology related to object-oriented programming.

C. Compare and contrast between procedural and object-oriented programming paradigms.

D. Define modularity and procedural abstraction.

E. Describe the purpose of information hiding.

F. Identify limitations of global variables.

G. List advantages of encapsulation as related to object oriented programming.

H. Discuss relationship of objects and classes.

I. Design an abstract data type from specifications.

J. Build a C++ class as an implementation of an abstract data type.

K. Implement a C++ class including both specification and implementation files.

L. Effectively apply a C++ class as data object for a specific problem.

Perform critical analysis to create C++ software solutions.
Objectives:

A. Analyze alternative solutions to a given programming problem and select the best approach.

B. Develop and implement a variety of testing strategies to verify correctness of C++ programs.

C. Diagnose and debug syntax, run-time, linker, and logic errors to create a working and correct software solution.

D. Document program source code for clarity and readability using accepted documentation standards including comments, indentation, and other techniques.

E. Integrate and re-use previously working program code into new software development.

F. Develop systematic test plans, create test cases and test data to verify program correctness.

G. Execute tests and correct logic errors based on test results.

H. Build user-friendly computer programs for a variety of real-world problems.

A.

Source: https://public.delta.edu/catalog/Pages/CourseDetail.aspx?CourseID=55022
Learning Activities:

· Lecture: Part of each class is lecture based, designed around student/instructor discussion and interaction to reinforce concepts.
· Lab Activities: Part of each class will be spent doing lab activities. Some of these activities will include written work such as answering questions, developing algorithms, or coding C++ programs. Other activities will include group interactions, in-class demonstrations, and program compilation, debugging, and execution.
· Outside Assignments: Students will be given outside homework assignments (due dates to be announced) to reinforce discussion concepts and lab activities. These assignments will sometime be based on chapter questions and will also involve programming. Each of the activities will be designed to provide concept reinforcement.
· Reading Assignments: Students will be given a reading assignment each week to help prepare them for the following weeks class discussion and activities.
· Quizzes: Students will be given a short quiz each week except exam weeks. Quizzes will be worth 10 points each and be based on each weeks reading assignments.
· Exams: We will have three exams, each about 5 weeks apart.

Grading:

· Exams (2 Mid-term Exams, Final Exam)

30%

· Class Quiz (~12 quizzes – given weekly)

18%

· Programming Projects - Homework Assignments

24%

· Lab activities.

18%

· Participation (attendance)

10%

Points in each area are accumulated and converted to percent form. The final letter grade is assigned as follows:

A 93 - 100%
A- 90 - 92%

B+ 87 - 89%
B 83 - 86%
B- 80 - 82%

C+ 77 - 79%
C 73 - 76%
C- 70 - 72%

D+ 67 - 69%
D 60 - 66%

E below 60%

Withdrawals and incomplete grades will be issued pursuant to the college policy. Incompletes are not generally given except in cases where the majority of the coursework is completed with a passing grade and the circumstances are serious, verifiable, and not within the student’s control (illness, family emergency, etc.).

Texts and Other Resources: The required texts are:

· Gaddis, Tony (2019) Starting Out With C++ - From Control Structures Through Objects, 9th Edition, Brief. Pearson Publishing. ISBN: 0-13-489573-8
Students will be directed to or will locate other resources to meet various objectives.

Supplies: Students should/must be able to store and retrieve files during class sessions and during lab work. The student needs to provide storage media for working files and for backup files so that two copies of files are always available. Some options are a combination of:

(1) a portable mass storage device (e.g. usb drive);

(2) a cloud location;

(3) FTP to their college-provided directory;

(4) something else.

Students may also want to acquire a two-pocket folder to keep their work, notes, and assignments organized.

Continuity/Disaster Recovery Planning: THE STUDENT IS RESPONSIBLE TO BACK UP COURSE WORK AND CHECK FOR MALICIOUS CODE/VIRUSES REGULARLY. If files are not backed up, the student is responsible to re-create the file.

Course Policies:

Communicate with Your Instructor: Good communication between the student and the instructor prevents problems in many areas. Many of the following policies address problems that develop when the instructor and the student have not communicated. Communication is a responsibility of both students and instructor.

Research and Reference: Be ready to use your textbooks for reference as well as reading. If a term or concept is not clear, research it. Use conventional print as well as Internet and Web resources specific to the course content. Owning and growing your knowledge gives you expertise.

Preparation for Class: Keep to the assigned schedule. If a tutorial or assignment is due on a particular day, it is due at the beginning of class. Even if problems occur (they always do), your instructor expects you to submit what you can on the due date, then undertake problem solving, seek assistance as needed, and resubmit the completed work. Problems and questions will be reviewed at the start of each class period where possible, or addressed during an appropriate part of the class session.

Tests: There are no make-up tests except for verified emergencies (injury or health-related crisis to the student or to an individual under the student’s direct care). Telephone, voicemail, or email communication must occur at the time of the emergency or, as soon as possible, by the student or family member. Verification (hospital, doctor, police report) must be presented immediately upon return to class and the test should be taken before the next class session.

Requests to re-schedule a test for serious need must be made to the instructor in written format (email) with justification. The instructor assumes that the student is aware of the class schedule and will not schedule other activities during class times.

Late Work: Extenuating circumstances concerning late assignments will be treated on an individual basis. There are situations in which students will be permitted to turn in assignments after the due date without penalty, but equity is a primary consideration in exercising this policy. No late assignments will be accepted after the last day of class.
Participation: Regular class attendance and active participation in classes are important elements in the learning process. Students are in college primarily for the sake of their intellectual growth and development. Attendance and participation provide appropriate opportunities for the evaluation of the student’s progress and create an environment of cooperative learning between the student and instructor.

Academic Honesty: Why would a student submit someone else’s work? The student gains no knowledge; the student masters nothing. However, some students take the work of others, while others give their work to students to claim as their own.

There are two parties to academic dishonesty.

· Any work submitted as the student’s own work must be his/her own work. To submit the work of others is intellectually dishonest and carries penalties. The instructor reserves the right to apply college policies to work submitted by a student but prepared by others.

· Any work provided to others to submit is also dishonest. Any student inclined to share work on the basis of “helping another” may be helping another to get a degree. They may also be contributing to incompetent work in the workforce.

· Your integrity matters.

Other:

· Please ask about having guests attend class. Individuals who are not members of the class affect both the instructor and other students.

· Cell phones should be in silent mode if a student is required by employment to be available or if a serious situation has developed or is impending. Students are asked to leave the class quietly for these types of calls and to return quietly upon their completion.

College Policies:

The College has a number of policies, procedures, rules and regulations which apply to all students. The Delta College Catalog, which is available both in print form and online at http://www.delta.edu/catalog/, includes many of them.

They include but are not limited to the rules in Section VI on Student Rights and Responsibilities, Integrity of Academic Work, Disruptive Students, Student Complaint and Hearing Process, Electronic Resources Access and Use Guidelines; Safety and Security policies, including Sexual Harassment; and student Records Access and Confidentiality.

They also include but are not limited to Academic Policies in Section IV on Grading System including I - Incomplete grades and Attendance Policy and Disputed Final Grade Policy.

The policies, procedures, rules and regulations published in the Catalog apply to you as a student in this course, and you are responsible for knowing and following them. You should also be familiar with, and follow, your instructor’s individual policies to ensure your success in the course.

The College also provides free resources to support student success such as the Teaching/Learning Center (http://www.delta.edu/tlc) located in the library and Counseling and Academic Advising, in D-102, phone 686-9330. If you have a disability that may interfere with your ability to benefit from the courses you are taking, it is your responsibility to make the College aware of this. Please contact Michael Cooper, Director of Disability Services, in D-106, phone 686-9322, or e-mail at michaelcooper2@delta.edu.

1

