
8/23/2014

1

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

Chapter 5:

Methods

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-2

Chapter Topics

Chapter 5 discusses the following main topics:

– Introduction to Methods

– Passing Arguments to a Method

– More About Local Variables

– Returning a Value from a Method

– Problem Solving with Methods

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-3

Why Write Methods?

• Methods are commonly used to break a

problem down into small manageable pieces.

This is called divide and conquer.

• Methods simplify programs. If a specific task

is performed in several places in the program, a

method can be written once to perform that

task, and then be executed anytime it is needed.

This is known as code reuse.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-4

void Methods and Value-Returning

Methods

• A void method is one that simply performs a

task and then terminates.

 System.out.println("Hi!");

• A value-returning method not only performs a

task, but also sends a value back to the code

that called it.

 int number = Integer.parseInt("700");

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-5

Defining a void Method

• To create a method, you must write a definition,
which consists of a header and a body.

• The method header, which appears at the
beginning of a method definition, lists several
important things about the method, including
the method’s name.

• The method body is a collection of statements
that are performed when the method is
executed.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-6

Two Parts of Method Declaration

public static void displayMesssage()

{

 System.out.println("Hello");

}

Header

Body

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-7

Parts of a Method Header

public static void displayMessage ()

{

 System.out.println("Hello");

}

Method

Modifiers

Return

Type

Method

Name Parentheses

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-8

Parts of a Method Header
• Method modifiers

– public—method is publicly available to code outside
the class

– static—method belongs to a class, not a specific
object.

• Return type—void or the data type from a value-
returning method

• Method name—name that is descriptive of what
the method does

• Parentheses—contain nothing or a list of one or
more variable declarations if the method is capable
of receiving arguments.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-9

Calling a Method

• A method executes when it is called.

• The main method is automatically called when a
program starts, but other methods are executed by
method call statements.

 displayMessage();

• Notice that the method modifiers and the void
return type are not written in the method call
statement. Those are only written in the method
header.

• Examples: SimpleMethod.java, LoopCall.java,
CreditCard.java, DeepAndDeeper.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-10

Documenting Methods

• A method should always be documented by

writing comments that appear just before the

method’s definition.

• The comments should provide a brief

explanation of the method’s purpose.

• The documentation comments begin with /**

and end with */.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-11

Passing Arguments to a Method

• Values that are sent into a method are called

arguments.

 System.out.println("Hello");

 number = Integer.parseInt(str);

• The data type of an argument in a method call must correspond

to the variable declaration in the parentheses of the method

declaration. The parameter is the variable that holds the value

being passed into a method.

• By using parameter variables in your method declarations, you

can design your own methods that accept data this way. See

example: PassArg.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-12

Passing 5 to the displayValue

Method

displayValue(5);

public static void displayValue(int

num)

{

 System.out.println("The value is " + num);

}

The argument 5 is copied into the
parameter variable num.

The method will display The value is 5

SimpleMethod.java
LoopCall.java
CreditCard.java
DeepAndDeeper.java
PassArg.java

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-13

Argument and Parameter Data Type

Compatibility

• When you pass an argument to a method, be

sure that the argument’s data type is compatible

with the parameter variable’s data type.

• Java will automatically perform widening

conversions, but narrowing conversions will

cause a compiler error.

 double d = 1.0;

 displayValue(d); Error! Can’t convert

double to int

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-14

Passing Multiple Arguments

showSum(5, 10);

public static void showSum(double num1, double num2)

{

double sum; //to hold the sum

sum = num1 + num2;

System.out.println("The sum is " + sum);

}

The argument 5 is copied into the num1 parameter.

The argument 10 is copied into the num2 parameter.

NOTE: Order matters!

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-15

Arguments are Passed by Value

• In Java, all arguments of the primitive data types are

passed by value, which means that only a copy of an

argument’s value is passed into a parameter variable.

• A method’s parameter variables are separate and

distinct from the arguments that are listed inside the

parentheses of a method call.

• If a parameter variable is changed inside a method, it

has no affect on the original argument.

• See example: PassByValue.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-16

Passing Object References to a Method

• Recall that a class type variable does not hold the

actual data item that is associated with it, but holds the

memory address of the object. A variable associated

with an object is called a reference variable.

• When an object such as a String is passed as an

argument, it is actually a reference to the object that is

passed.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-17

Passing a Reference as an Argument

showLength(name);

public static void showLength(String str)

{

 System.out.println(str + " is " +

str.length() + " characters long.");

 str = "Joe" // see next slide

}

address

address

“Warren”

Both variables reference the same object

The address of the object is

copied into the str parameter.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-18

Strings are Immutable Objects

• Strings are immutable objects, which means that
they cannot be changed. When the line

 str = "Joe";

 is executed, it cannot change an immutable object, so

creates a new object.

• See example: PassString.java

address

address

“Warren”

“Joe”

The name variable holds the

address of a String object

The str variable holds the

address of a different
String object

PassByValue.java
PassString.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-19

@param Tag in Documentation

Comments

• You can provide a description of each parameter in

your documentation comments by using the @param

tag.

• General format

 @param parameterName Description

• See example: TwoArgs2.java

• All @param tags in a method’s documentation

comment must appear after the general description.The

description can span several lines.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-20

More About Local Variables

• A local variable is declared inside a method and is not
accessible to statements outside the method.

• Different methods can have local variables with the same
names because the methods cannot see each other’s local
variables.

• A method’s local variables exist only while the method is
executing. When the method ends, the local variables and
parameter variables are destroyed and any values stored are
lost.

• Local variables are not automatically initialized with a
default value and must be given a value before they can be
used.

• See example: LocalVars.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-21

Returning a Value from a Method

• Data can be passed into a method by way of
the parameter variables. Data may also be
returned from a method, back to the
statement that called it.

 int num = Integer.parseInt("700");

• The string “700” is passed into the
parseInt method.

• The int value 700 is returned from the
method and assigned to the num variable.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-22

Defining a Value-Returning Method

public static int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

Return type

This expression must be of the

same data type as the return type

The return statement

causes the method to end

execution and it returns a

value back to the

statement that called the

method.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-23

Calling a Value-Returning Method

total = sum(value1, value2);

public static int sum(int num1, int num2)

{

 int result;

 result = num1 + num2;

 return result;

}

20 40

60

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-24

@return Tag in Documentation

Comments

• You can provide a description of the return value in
your documentation comments by using the @return
tag.

• General format

 @return Description

• See example: ValueReturn.java

• The @return tag in a method’s documentation
comment must appear after the general description.
The description can span several lines.

TwoArgs2.java
LocalVars.java
ValueReturn.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-25

Returning a booleanValue
• Sometimes we need to write methods to test

arguments for validity and return true or false
public static boolean isValid(int number)

{

 boolean status;

 if(number >= 1 && number <= 100)

 status = true;

 else

 status = false;

 return status;

}

Calling code:
int value = 20;

If(isValid(value))

 System.out.println("The value is within range");

else

 System.out.println("The value is out of range");

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-26

Returning a Reference to a String

Object
customerName = fullName("John", "Martin");

 public static String fullName(String first, String last)

 {

 String name;

 name = first + " " + last;

 return name;

 }

See example:

 ReturnString.java

address

“John Martin”

Local variable name holds

the reference to the object.

The return statement sends

a copy of the reference

back to the call statement

and it is stored in
customerName.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-27

Problem Solving with Methods

• A large, complex problem can be solved a piece
at a time by methods.

• The process of breaking a problem down into
smaller pieces is called functional
decomposition.

• See example: SalesReport.java

• If a method calls another method that has a
throws clause in its header, then the calling
method should have the same throws clause.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5-28

Calling Methods that Throw Exceptions

• Note that the main and getTotalSales methods
in SalesReport.java have a throws IOException
clause.

• All methods that use a Scanner object to open a file
must throw or handle IOException.

• You will learn how to handle exceptions in Chapter
12.

• For now, understand that Java required any method
that interacts with an external entity, such as the file
system to either throw an exception to be handles
elsewhere in your application or to handle the
exception locally.

ReturnString.java
SalesReport.java

