
8/23/2014

1

Chapter 6:

A First Look at Classes

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-2

Chapter Topics

Chapter 6 discusses the following main topics:

– Objects and Classes

– Writing a Simple Class, Step by Step

– Instance Fields and Methods

– Constructors

– Passing Objects as Arguments

– Overloading Methods and Constructors

– Scope of Instance Fields

– Packages and import Statements

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-3

Objects and Classes

• An object exists in memory, and performs a

specific task.

• Objects have two general capabilities:

– Objects can store data. The pieces of data stored in

an object are known as fields.

– Objects can perform operations. The operations that

an object can perform are known as methods.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

• You have already used the following objects:

– Scanner objects, for reading input

– Random objects, for generating random numbers

– PrintWriter objects, for writing data to files

• When a program needs the services of a

particular type of object, it creates that object in

memory, and then calls that object's methods as

necessary.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

• Classes: Where Objects Come From

– A class is code that describes a particular type of

object. It specifies the data that an object can hold

(the object's fields), and the actions that an object

can perform (the object's methods).

– You can think of a class as a code "blueprint" that

can be used to create a particular type of object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

• When a program is running, it can use the class

to create, in memory, as many objects of a

specific type as needed.

• Each object that is created from a class is called

an instance of the class.

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

Scanner keyboard = new Scanner(System.in);

keyboard

variable

Scanner

object

This expression creates a
Scanner object in memory.

The object's memory address
is assigned to the keyboard

variable.

Example:

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

Random rand = new Random();

rand

variable

Random

object

This expression creates a
Random object in memory.

The object's memory address is
assigned to the rand variable.

Example:

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

PrintWriter outputFile = new PrintWriter("numbers.txt");

outputFile

variable

PrintWriter

object

This expression creates a
PrintWriter object in memory.

The object's memory address is assigned to
the outputFile variable.

Example:

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Objects and Classes

• The Java API provides many classes

– So far, the classes that you have created objects

from are provided by the Java API.

– Examples:

•Scanner

•Random

•PrintWriter

• See ObjectDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-11

Writing a Class, Step by Step

• A Rectangle object will have the following

fields:

– length. The length field will hold the rectangle’s

length.

– width. The width field will hold the rectangle’s

width.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-12

Writing a Class, Step by Step

• The Rectangle class will also have the
following methods:
– setLength. The setLength method will store a

value in an object’s length field.

– setWidth. The setWidth method will store a value
in an object’s width field.

– getLength. The getLength method will return the
value in an object’s length field.

– getWidth. The getWidth method will return the
value in an object’s width field.

– getArea. The getArea method will return the area
of the rectangle, which is the result of the object’s
length multiplied by its width.

ObjectDemo.java

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-13

UML Diagram

• Unified Modeling Language (UML) provides a

set of standard diagrams for graphically

depicting object-oriented systems.

Class name goes here

Fields are listed here

Methods are listed here

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-14

UML Diagram for
Rectangle class

Rectangle

length

width

setLength()

setWidth()

getLength()

getWidth()

getArea()

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-15

Writing the Code for the Class Fields

public class Rectangle

{

 private double length;

 private double width;

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-16

Access Specifiers

• An access specifier is a Java keyword that indicates
how a field or method can be accessed.

• public

– When the public access specifier is applied to a class
member, the member can be accessed by code inside the
class or outside.

• private

– When the private access specifier is applied to a class
member, the member cannot be accessed by code outside the
class. The member can be accessed only by methods that are
members of the same class.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-17

Header for the setLength Method

public void setLength (double len)

Access

specifier

Return

Type

Parameter variable declaration

Method

Name

Notice the word
static does not

appear in the method

header designed to work

on an instance of a class

(instance method).

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-18

Writing and Demonstrating the
setLength Method

 /**

 The setLength method stores a value in the

 length field.

 @param len The value to store in length.

 */

 public void setLength(double len)

 {

 length = len;

 }

Examples: Rectangle.java, LengthDemo.java

Rectangle Class Phase 1/Rectangle.java
Rectangle Class Phase 1/LengthDemo.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-19

Creating a Rectangle object

Rectangle box = new Rectangle ();

address
0.0

0.0

length:

width:

The box

variable holds

the address of

the Rectangle

object.

A Rectangle object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-20

Calling the setLength Method

box.setLength(10.0);

address
10.0

0.0

length:

width:

The box

variable holds

the address of

the
Rectangle

object.

A Rectangle object

This is the state of the box object after
the setLength method executes.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-21

Writing the getLength Method

 /**

 The getLength method returns a Rectangle

 object's length.

 @return The value in the length field.

 */

 public double getLength()

 {

 return length;

 }

Similarly, the setWidth and getWidth methods
can be created.

Examples: Rectangle.java, LengthWidthDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-22

Writing and Demonstrating the getArea

Method

 /**
 The getArea method returns a Rectangle

 object's area.

 @return The product of length times width.

 */

 public double getArea()

 {

 return length * width;

 }

Examples: Rectangle.java, RectangleDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-23

Accessor and Mutator Methods

• Because of the concept of data hiding, fields in a class
are private.

• The methods that retrieve the data of fields are called
accessors.

• The methods that modify the data of fields are called
mutators.

• Each field that the programmer wishes to be viewed by
other classes needs an accessor.

• Each field that the programmer wishes to be modified
by other classes needs a mutator.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-24

Accessors and Mutators

• For the Rectangle example, the accessors and

mutators are:
– setLength : Sets the value of the length field.

public void setLength(double len) …

– setWidth : Sets the value of the width field.

public void setLength(double w) …

– getLength : Returns the value of the length field.

public double getLength() …

– getWidth : Returns the value of the width field.

public double getWidth() …

• Other names for these methods are getters and setters.

Rectangle Class Phase 3/Rectangle.java
Rectangle Class Phase 3/LengthWidthDemo.java
Rectangle Class Phase 4/Rectangle.java
Rectangle Class Phase 4/RectangleDemo.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Data Hiding

• An object hides its internal, private fields from

code that is outside the class that the object is

an instance of.

• Only the class's methods may directly access

and make changes to the object’s internal data.

• Code outside the class must use the class's

public methods to operate on an object's private

fields.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Data Hiding

• Data hiding is important because classes are

typically used as components in large software

systems, involving a team of programmers.

• Data hiding helps enforce the integrity of an

object's internal data.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-27

Stale Data

• Some data is the result of a calculation.

• Consider the area of a rectangle.

– length × width

• It would be impractical to use an area variable here.

• Data that requires the calculation of various factors has

the potential to become stale.

• To avoid stale data, it is best to calculate the value of

that data within a method rather than store it in a

variable.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-28

Stale Data

• Rather than use an area variable in a Rectangle

class:
public double getArea()

{

 return length * width;

}

• This dynamically calculates the value of the

rectangle’s area when the method is called.

• Now, any change to the length or width variables

will not leave the area of the rectangle stale.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-29

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show

return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Access modifiers

are denoted as:

+ public

- private

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-30

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show

return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Variable types are

placed after the variable

name, separated by a

colon.

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-31

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show

return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Method return types are

placed after the method

declaration name,

separated by a colon.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-32

UML Data Type and Parameter Notation

• UML diagrams are language independent.

• UML diagrams use an independent notation to show

return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Method parameters

are shown inside the

parentheses using the

same notation as

variables.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-33

Converting the UML Diagram to Code

• Putting all of this information together, a Java class

file can be built easily using the UML diagram.

• The UML diagram parts match the Java class file

structure.

ClassName

Fields

Methods

class header

{

 Fields

 Methods

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-34

Converting the UML Diagram to Code

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

public class Rectangle

{

 private double width;

 private double length;

 public void setWidth(double w)

 {

 }

 public void setLength(double len)

 {

 }

 public double getWidth()

 { return 0.0;

 }

 public double getLength()

 { return 0.0;

 }

 public double getArea()

 { return 0.0;

 }

}

The structure of the class can be

compiled and tested without having

bodies for the methods. Just be sure to

put in dummy return values for methods

that have a return type other than void.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-35

Converting the UML Diagram to Code
public class Rectangle

{

 private double width;

 private double length;

 public void setWidth(double w)

 { width = w;

 }

 public void setLength(double len)

 { length = len;

 }

 public double getWidth()

 { return width;

 }

 public double getLength()

 { return length;

 }

 public double getArea()

 { return length * width;

 }

}

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

Once the class structure has been tested,

the method bodies can be written and

tested.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-36

Class Layout Conventions

• The layout of a source code file can vary by

employer or instructor.

• A common layout is:

– Fields listed first

– Methods listed second

• Accessors and mutators are typically grouped.

• There are tools that can help in formatting

layout to specific standards.

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-37

Instance Fields and Methods

• Fields and methods that are declared as

previously shown are called instance fields and

instance methods.

• Objects created from a class each have their

own copy of instance fields.

• Instance methods are methods that are not

declared with a special keyword, static.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-38

Instance Fields and Methods

• Instance fields and instance methods require an

object to be created in order to be used.

• See example: RoomAreas.java

• Note that each room represented in this

example can have different dimensions.
Rectangle kitchen = new Rectangle();

Rectangle bedroom = new Rectangle();

Rectangle den = new Rectangle();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-39

States of Three Different Rectangle

Objects

address
15.0

12.0

length:

width:

address
10.0

14.0

length:

width:

address
20.0

30.0

length:

width:

The kitchen variable

holds the address of a
Rectangle Object.

The bedroom variable

holds the address of a
Rectangle Object.

The den variable

holds the address of a
Rectangle Object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-40

Constructors

• Classes can have special methods called constructors.

• A constructor is a method that is automatically called

when an object is created.

• Constructors are used to perform operations at the time

an object is created.

• Constructors typically initialize instance fields and

perform other object initialization tasks.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-41

Constructors

• Constructors have a few special properties that

set them apart from normal methods.

– Constructors have the same name as the class.

– Constructors have no return type (not even void).

– Constructors may not return any values.

– Constructors are typically public.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-42

Constructor for Rectangle Class

 /**

 Constructor

 @param len The length of the rectangle.

 @param w The width of the rectangle.

 */

 public Rectangle(double len, double w)

 {

 length = len;

 width = w;

 }

Examples: Rectangle.java, ConstructorDemo.java

Rectangle Class Phase 4/RoomAreas.java
Rectangle Class Phase 5/Rectangle.java
Rectangle Class Phase 5/ConstructorDemo.java

8/23/2014

8

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-43

Constructors in UML

• In UML, the most common way constructors
are defined is:

Rectangle

- width : double

- length : double

+Rectangle(len:double, w:double)

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

Notice there is no

return type listed

for constructors.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-44

Uninitialized Local Reference Variables

• Reference variables can be declared without being initialized.

 Rectangle box;

• This statement does not create a Rectangle object, so it is an

uninitialized local reference variable.

• A local reference variable must reference an object before it can

be used, otherwise a compiler error will occur.

 box = new Rectangle(7.0, 14.0);

• box will now reference a Rectangle object of length 7.0 and

width 14.0.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-45

The Default Constructor

• When an object is created, its constructor is always

called.

• If you do not write a constructor, Java provides one

when the class is compiled. The constructor that Java

provides is known as the default constructor.

– It sets all of the object’s numeric fields to 0.

– It sets all of the object’s boolean fields to false.

– It sets all of the object’s reference variables to the special

value null.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-46

The Default Constructor

• The default constructor is a constructor with no

parameters, used to initialize an object in a default

configuration.

• The only time that Java provides a default constructor

is when you do not write any constructor for a class.

– See example: First version of Rectangle.java

• A default constructor is not provided by Java if a

constructor is already written.

– See example: Rectangle.java with Constructor

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-47

Writing Your Own No-Arg Constructor

• A constructor that does not accept arguments is known
as a no-arg constructor.

• The default constructor (provided by Java) is a no-arg
constructor.

• We can write our own no-arg constructor

 public Rectangle()

 {

 length = 1.0;

 width = 1.0;

 }

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-48

The String Class Constructor

• One of the String class constructors accepts a

string literal as an argument.

• This string literal is used to initialize a String

object.

• For instance:

String name = new String("Michael Long");

Rectangle Class Phase 1/Rectangle.java
Rectangle Class Phase 5/Rectangle.java

8/23/2014

9

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-49

The String Class Constructor

• This creates a new reference variable name that points

to a String object that represents the name “Michael

Long”

• Because they are used so often, String objects can

be created with a shorthand:

String name = "Michael Long";

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Passing Objects as Arguments

• When you pass a object as an argument, the

thing that is passed into the parameter variable

is the object's memory address.

• As a result, parameter variable references the

object, and the receiving method has access to

the object.

• See DieArgument.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-51

Overloading Methods and Constructors

• Two or more methods in a class may have the

same name as long as their parameter lists are

different.

• When this occurs, it is called method

overloading. This also applies to constructors.

• Method overloading is important because

sometimes you need several different ways to

perform the same operation.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-52

Overloaded Method add

public int add(int num1, int num2)

{

 int sum = num1 + num2;

 return sum;

}

public String add (String str1, String str2)

{

 String combined = str1 + str2;

 return combined;

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-53

Method Signature and Binding

• A method signature consists of the method’s name and the data

types of the method’s parameters, in the order that they appear.

The return type is not part of the signature.

add(int, int)

add(String, String)

• The process of matching a method call with the correct method

is known as binding. The compiler uses the method signature to

determine which version of the overloaded method to bind the

call to.

Signatures of the

add methods of

previous slide

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-54

Rectangle Class Constructor Overload

If we were to add the no-arg constructor we wrote
previously to our Rectangle class in addition to the
original constructor we wrote, what would happen
when we execute the following calls?

Rectangle box1 = new Rectangle();

Rectangle box2 = new Rectangle(5.0, 10.0);

DieArgument.java

8/23/2014

10

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-55

Rectangle Class Constructor Overload

If we were to add the no-arg constructor we wrote
previously to our Rectangle class in addition to the
original constructor we wrote, what would happen
when we execute the following calls?

Rectangle box1 = new Rectangle();

Rectangle box2 = new Rectangle(5.0, 10.0);

The first call would use the no-arg constructor and box1 would
have a length of 1.0 and width of 1.0.

The second call would use the original constructor and box2
would have a length of 5.0 and a width of 10.0.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-56

The BankAccount Example

BankAccount.java

AccountTest.java
BankAccount

-balance:double

+BankAccount()

+BankAccount(startBalance:double)

+BankAccount(strString):

+deposit(amount:double):void

+deposit(str:String):void

+withdraw(amount:double):void

+withdraw(str:String):void

+setBalance(b:double):void

+setBalance(str:String):void

+getBalance():double

Overloaded Constructors

Overloaded deposit methods

Overloaded withdraw methods

Overloaded setBalance methods

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-57

Scope of Instance Fields

• Variables declared as instance fields in a class

can be accessed by any instance method in the

same class as the field.

• If an instance field is declared with the

public access specifier, it can also be

accessed by code outside the class, as long as

an instance of the class exists.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-58

Shadowing

• A parameter variable is, in effect, a local variable.

• Within a method, variable names must be unique.

• A method may have a local variable with the same name as
an instance field.

• This is called shadowing.

• The local variable will hide the value of the instance field.

• Shadowing is discouraged and local variable names should
not be the same as instance field names.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-59

Packages and import Statements

• Classes in the Java API are organized into packages.

• Explicit and Wildcard import statements

– Explicit imports name a specific class
• import java.util.Scanner;

– Wildcard imports name a package, followed by an *
• import java.util.*;

• The java.lang package is automatically made
available to any Java class.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-60

Some Java Standard Packages

8/23/2014

11

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-61

Object Oriented Design
Finding Classes and Their Responsibilities

• Finding the classes
– Get written description of the problem domain

– Identify all nouns, each is a potential class

– Refine list to include only classes relevant to the
problem

• Identify the responsibilities
– Things a class is responsible for knowing

– Things a class is responsible for doing

– Refine list to include only classes relevant to the
problem

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-62

Object Oriented Design
Finding Classes and Their Responsibilities

– Identify the responsibilities
• Things a class is responsible for knowing

• Things a class is responsible for doing

• Refine list to include only classes relevant to the problem

