
8/23/2014

1

Chapter 8:

A Second Look at Classes and Objects

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-2

Chapter Topics

Chapter 8 discusses the following main topics:

– Static Class Members

– Passing Objects as Arguments to Methods

– Returning Objects from Methods

– The toString method

– Writing an equals Method

– Methods that Copy Objects

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-3

Chapter Topics

Chapter 8 discusses the following main topics:

– Aggregation

– The this Reference Variable

– Enumerated Types

– Garbage Collection

– Focus on Object-Oriented Design: Class

Collaboration

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-4

Review of Instance Fields and Methods

• Each instance of a class has its own copy of instance

variables.

– Example:

• The Rectangle class defines a length and a width field.

• Each instance of the Rectangle class can have different values

stored in its length and width fields.

• Instance methods require that an instance of a class be

created in order to be used.

• Instance methods typically interact with instance fields

or calculate values based on those fields.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-5

Static Class Members

• Static fields and static methods do not belong to a

single instance of a class.

• To invoke a static method or use a static field, the class

name, rather than the instance name, is used.

• Example:

double val = Math.sqrt(25.0);

Class name Static method

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-6

Static Fields

• Class fields are declared using the static keyword
between the access specifier and the field type.
private static int instanceCount = 0;

• The field is initialized to 0 only once, regardless of the
number of times the class is instantiated.

– Primitive static fields are initialized to 0 if no initialization is
performed.

• Examples: Countable.java, StaticDemo.java

Countable.java
StaticDemo.java

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-7

Static Fields

instanceCount field

(static)

3

Object1 Object3 Object2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-8

Static Methods

• Methods can also be declared static by placing the static

keyword between the access modifier and the return type of

the method.
public static double milesToKilometers(double miles)

{…}

• When a class contains a static method, it is not necessary to

create an instance of the class in order to use the method.
double kilosPerMile = Metric.milesToKilometers(1.0);

• Examples: Metric.java, MetricDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-9

Static Methods

• Static methods are convenient because they may be

called at the class level.

• They are typically used to create utility classes, such as

the Math class in the Java Standard Library.

• Static methods may not communicate with instance

fields, only static fields.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-10

Passing Objects as Arguments
• Objects can be passed to methods as arguments.

• Java passes all arguments by value.

• When an object is passed as an argument, the value of the

reference variable is passed.

• The value of the reference variable is an address or

reference to the object in memory.

• A copy of the object is not passed, just a pointer to the

object.

• When a method receives a reference variable as an

argument, it is possible for the method to modify the

contents of the object referenced by the variable.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-11

Passing Objects as Arguments
Examples:

PassObject.java

PassObject2.java

displayRectangle(box);

public static void displayRectangle(Rectangle r)

{

 // Display the length and width.

 System.out.println("Length: " + r.getLength() +

 " Width: " + r.getWidth());

}

A Rectangle object

 length:

 width:

12.0

5.0

Address

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-12

Returning Objects From Methods

• Methods are not limited to returning the primitive data
types.

• Methods can return references to objects as well.

• Just as with passing arguments, a copy of the object is not
returned, only its address.

• See example: ReturnObject.java

• Method return type:

 public static BankAccount getAccount()

 {

 …

 return new BankAccount(balance);

 }

Metric.java
MetricDemo.java
PassObject.java
PassObject2.java
ReturnObject.java

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-13

Returning Objects from Methods
account = getAccount();

public static BankAccount getAccount()

{

 …

 return new BankAccount(balance);

}

balance: 3200.0

address

A BankAccount Object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-14

The toString Method
• The toString method of a class can be called explicitly:

Stock xyzCompany = new Stock ("XYZ", 9.62);

System.out.println(xyzCompany.toString());

• However, the toString method does not have to be
called explicitly but is called implicitly whenever you pass
an object of the class to println or print.

 Stock xyzCompany = new Stock ("XYZ", 9.62);

 System.out.println(xyzCompany);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-15

The toString method

• The toString method is also called implicitly

whenever you concatenate an object of the class with a

string.

Stock xyzCompany = new Stock ("XYZ", 9.62);

System.out.println("The stock data is:\n" +

xyzCompany);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-16

The toString Method

• All objects have a toString method that returns the
class name and a hash of the memory address of the
object.

• We can override the default method with our own to
print out more useful information.

• Examples: Stock.java, StockDemo1.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-17

The equals Method

• When the == operator is used with reference variables,

the memory address of the objects are compared.

• The contents of the objects are not compared.

• All objects have an equals method.

• The default operation of the equals method is to

compare memory addresses of the objects (just like the

== operator).

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-18

The equals Method

• The Stock class has an equals method.

• If we try the following:

Stock stock1 = new Stock("GMX", 55.3);

Stock stock2 = new Stock("GMX", 55.3);

if (stock1 == stock2) // This is a mistake.

 System.out.println("The objects are the same.");

else

 System.out.println("The objects are not the same.");

only the addresses of the objects are compared.

Stock Class Phase 1/Stock.java
Stock Class Phase 1/StockDemo1.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-19

The equals Method

• Instead of using the == operator to compare two Stock
objects, we should use the equals method.

• Now, objects can be compared by their contents rather than by
their memory addresses.

• See example: StockCompare.java

public boolean equals(Stock object2)

{

 boolean status;

 if(symbol.equals(Object2.symbol && sharePrice == Object2.sharePrice)

 status = true;

 else

 status = false;

 return status;

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-20

Methods That Copy Objects

• There are two ways to copy an object.

– You cannot use the assignment operator to copy reference
types

– Reference only copy
• This is simply copying the address of an object into another

reference variable.

– Deep copy (correct)
• This involves creating a new instance of the class and copying the

values from one object into the new object.

– Example: ObjectCopy.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-21

Copy Constructors

• A copy constructor accepts an existing object of the same class
and clones it

 public Stock(Stock object 2)

 {

 symbol = object2.symbol;

 sharePrice = object2.sharePrice;

 }

 // Create a Stock object

 Stock company1 = new Stock("XYZ", 9.62);

 //Create company2, a copy of company1

 Stock company2 = new Stock(company1);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-22

Aggregation

• Creating an instance of one class as a reference in

another class is called object aggregation.

• Aggregation creates a “has a” relationship between

objects.

• Examples:

– Instructor.java, Textbook.java, Course.java,

CourseDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-23

Aggregation in UML Diagrams

Course

- courseName : String

- Instructor : Instructor

- textBook : TextBook

+ Course(name : String, instr : Instructor, text : TextBook)

+ getName() : String

+ getInstructor() : Instructor

+ getTextBook() : TextBook

+ toString() : String

TextBook

- title : String

- author : String

- publisher : String

+ TextBook(title : String, author : String, publisher :

 String)

+ TextBook(object2 : TextBook)

+ set(title : String, author : String, publisher : String)

 : void

+ toString() : String

Instructor

- lastName : String

- firstName : String

- officeNumber : String

+ Instructor(lname : String, fname : String,

 office : String)

+Instructor(object2 : Instructor)

+set(lname : String, fname : String,

office : String): void

+ toString() : String

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-24

Returning References to Private Fields

• Avoid returning references to private data elements.

• Returning references to private variables will allow

any object that receives the reference to modify the

variable.

Stock Class Phase 2/StockCompare.java
Stock Class Phase 3/ObjectCopy.java
Instructor.java
Textbook.java
Course.java
CourseDemo.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-25

Null References

• A null reference is a reference variable that points to nothing.

• If a reference is null, then no operations can be performed on it.

• References can be tested to see if they point to null prior to
being used.
if(name != null)

{

 System.out.println("Name is: "

 + name.toUpperCase());

}

• Examples: FullName.java, NameTester.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-26

The this Reference

• The this reference is simply a name that an object can use to
refer to itself.

• The this reference can be used to overcome shadowing and
allow a parameter to have the same name as an instance field.

public void setFeet(int feet)

{

 this.feet = feet;

 //sets the this instance’s feet field

 //equal to the parameter feet.

}

Local parameter variable feet

Shadowed instance variable

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-27

The this Reference

• The this reference can be used to call a constructor from
another constructor.
public Stock(String sym)

{

 this(sym, 0.0);

}

– This constructor would allow an instance of the Stock class to be
created using only the symbol name as a parameter.

– It calls the constructor that takes the symbol and the price, using
sym as the symbol argument and 0 as the price argument.

• Elaborate constructor chaining can be created using this
technique.

• If this is used in a constructor, it must be the first
statement in the constructor.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-28

Enumerated Types

• Known as an enum, requires declaration and definition
like a class

• Syntax:
enum typeName { one or more enum constants }

– Definition:
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

 FRIDAY, SATURDAY }

– Declaration:
Day WorkDay; // creates a Day enum

– Assignment:
Day WorkDay = Day.WEDNESDAY;

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-29

Enumerated Types

• An enum is a specialized class

Day.MONDAY

Day.TUESDAY

Day.WEDNESDAY

Day.SUNDAY

Day.THURSDAY

Day.FRIDAY

Day.SATURDAY

address

Each are objects of type Day, a specialized class

Day workDay = Day.WEDNESDAY;

The workDay variable holds the address of the

Day.WEDNESDAY object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-30

Enumerated Types - Methods

• toString – returns name of calling constant

• ordinal – returns the zero-based position of the constant in the enum. For

example the ordinal for Day.THURSDAY is 4

• equals – accepts an object as an argument and returns true if the argument

is equal to the calling enum constant

• compareTo - accepts an object as an argument and returns a negative

integer if the calling constant’s ordinal < than the argument’s ordinal, a

positive integer if the calling constant’s ordinal > than the argument’s

ordinal and zero if the calling constant’s ordinal == the argument’s ordinal.

• Examples: EnumDemo.java, CarType.java, SportsCar.java,

SportsCarDemo.java

FullName.java
NameTester.java
EnumDemo.java
CarType.java
SportsCar.java
SportsCarDemo.java

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-31

Enumerated Types - Switching

• Java allows you to test an enum constant with a

switch statement.

Example: SportsCarDemo2.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-32

Garbage Collection

• When objects are no longer needed they should be

destroyed.

• This frees up the memory that they consumed.

• Java handles all of the memory operations for you.

• Simply set the reference to null and Java will reclaim

the memory.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-33

Garbage Collection

• The Java Virtual Machine has a process that runs in the

background that reclaims memory from released objects.

• The garbage collector will reclaim memory from any object

that no longer has a valid reference pointing to it.

 BankAccount account1 = new BankAccount(500.0);

 BankAccount account2 = account1;

• This sets account1 and account2 to point to the same

object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-34

Garbage Collection

A BankAccount object

Balance:

500.0 Address account1

account2 Address

Here, both account1 and account2 point to the same

instance of the BankAccount class.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-35

Garbage Collection

However, by running the statement: account1 = null;

only account2 will be pointing to the object.

A BankAccount object

null account1

account2 Address

Balance:

500.0

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-36

Garbage Collection

If we now run the statement: account2 = null;

neither account1 or account2 will be pointing to the object.

Since there are no valid references to this

object, it is now available for the garbage

collector to reclaim.

A BankAccount object

null account1

account2 null

Balance:

500.0

SportsCarDemo2.java

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-37

A BankAccount object

null account1

account2 null

Balance:

500.0

Garbage Collection

The garbage collector reclaims the

memory the next time it runs in

the background.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-38

The finalize Method

• If a method with the signature:

 public void finalize(){…}

 is included in a class, it will run just prior to the

garbage collector reclaiming its memory.

• The garbage collector is a background thread that runs

periodically.

• It cannot be determined when the finalize method

will actually be run.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-39

Class Collaboration

• Collaboration – two classes interact with each other

• If an object is to collaborate with another object, it
must know something about the second object’s
methods and how to call them

• If we design a class StockPurchase that
collaborates with the Stock class (previously
defined), we define it to create and manipulate a
Stock object

See examples: StockPurchase.java, StockTrader.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 8-40

CRC Cards

– Class, Responsibilities and Collaborations (CRC) cards are
useful for determining and documenting a class’s
responsibilities

• The things a class is responsible for knowing

• The actions a class is responsible for doing

– CRC Card Layout (Example for class Stock)

Stock

Know stock to purchase Stock class

Know number of shares None

Calculate cost of purchase Stock class

Etc. None or class name

StockPurchase Class/StockPurchase.java
StockPurchase Class/StockTrader.java

