
8/23/2014

1

Chapter 9:

Text Processing and More about Wrapper Classes

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-2

Chapter Topics
Chapter 9 discusses the following main topics:

– Introduction to Wrapper Classes

– Character Testing and Conversion with the Character Class

– More String Methods

– The StringBuilder Class

– The StringTokenizer Class

– Wrapper Classes for the Numeric Data Types

– Focus on Problem Solving: The TestScoreReader

Class

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-3

Introduction to Wrapper Classes

• Java provides 8 primitive data types.

• They are called “primitive” because they are not created from

classes.

• Java provides wrapper classes for all of the primitive data types.

• A wrapper class is a class that is “wrapped around” a primitive

data type.

• The wrapper classes are part of java.lang so to use them,

there is no import statement required.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-4

Wrapper Classes

• Wrapper classes allow you to create objects to
represent a primitive.

• Wrapper classes are immutable, which means that
once you create an object, you cannot change the
object’s value.

• To get the value stored in an object you must call a
method.

• Wrapper classes provide static methods that are very
useful

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-5

Character Testing and Conversion With The
Character Class

• The Character class allows a char data type to

be wrapped in an object.

• The Character class provides methods that

allow easy testing, processing, and conversion of

character data.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-6

The Character Class

Method Description

boolean isDigit(

 char ch)

Returns true if the argument passed into ch is a

digit from 0 through 9. Otherwise returns false.

boolean isLetter(

 char ch)

Returns true if the argument passed into ch is an

alphabetic letter. Otherwise returns false.

boolean isLetterOrDigit(

 char ch)

Returns true if the character passed into ch

contains a digit (0 through 9) or an alphabetic

letter. Otherwise returns false.

boolean isLowerCase(

 char ch)

Returns true if the argument passed into ch is a

lowercase letter. Otherwise returns false.

boolean isUpperCase(

 char ch)

Returns true if the argument passed into ch is an

uppercase letter. Otherwise returns false.

boolean isSpaceChar(

 char ch)

Returns true if the argument passed into ch is a

space character. Otherwise returns false.

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-7

Character Testing and Conversion
With The Character Class

• Example:

CharacterTest.java

CustomerNumber.java

• The Character class provides two methods that will

change the case of a character.

Method Description

char toLowerCase(

 char ch)

Returns the lowercase equivalent of the

argument passed to ch.

char toUpperCase(

 char ch)

Returns the uppercase equivalent of the

argument passed to ch.

See example: CircleArea.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-8

Substrings

• The String class provides several methods that search for a

string inside of a string.

• A substring is a string that is part of another string.

• Some of the substring searching methods provided by the
String class:

boolean startsWith(String str)

boolean endsWith(String str)

boolean regionMatches(int start, String str, int start2,

 int n)

boolean regionMatches(boolean ignoreCase, int start,

 String str, int start2, int n)

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-9

Searching Strings

• The startsWith method determines whether a

string begins with a specified substring.

String str = "Four score and seven years ago";

if (str.startsWith("Four"))

 System.out.println("The string starts with Four.");

else

 System.out.println("The string does not start with Four.");

• str.startsWith("Four") returns true because

str does begin with “Four”.

• startsWith is a case sensitive comparison.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-10

Searching Strings

• The endsWith method determines whether a string

ends with a specified substring.

String str = "Four score and seven years ago";

if (str.endsWith("ago"))

 System.out.println("The string ends with ago.");

else

 System.out.println("The string does not end with ago.");

• The endsWith method also performs a case sensitive

comparison.

• Example: PersonSearch.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-11

Searching Strings

• The String class provides methods that will if
specified regions of two strings match.
– regionMatches(int start, String str, int start2,

int n)

• returns true if the specified regions match or false if they
don’t

• Case sensitive comparison

– regionMatches(boolean ignoreCase, int start,

String str, int start2, int n)

• If ignoreCase is true, it performs case insensitive
comparison

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-12

Searching Strings

• The String class also provides methods that will

locate the position of a substring.

– indexOf

• returns the first location of a substring or character in the
calling String Object.

– lastIndexOf

• returns the last location of a substring or character in the
calling String Object.

CharacterTest.java
CustomerNumber.java
CircleArea.java
PersonSearch.java

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-13

Searching Strings

String str = "Four score and seven years ago";

int first, last;

first = str.indexOf('r');

last = str.lastIndexOf('r');

System.out.println("The letter r first appears at "

 + "position " + first);

System.out.println("The letter r last appears at "

 + "position " + last);

String str = "and a one and a two and a three";

int position;

System.out.println("The word and appears at the "

 + "following locations.");

position = str.indexOf("and");

while (position != -1)

{

 System.out.println(position);

 position = str.indexOf("and", position + 1);

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-14

String Methods For Getting Character Or

Substring Location See Table 9-4 on

page 574.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-15

String Methods For Getting Character Or

Substring Location See Table 9-4 on

page 574.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-16

Extracting Substrings

• The String class provides methods to extract
substrings in a String object.

– The substring method returns a substring beginning
at a start location and an optional ending location.

String fullName = "Cynthia Susan Smith";

String lastName = fullName.substring(14);

System.out.println("The full name is "

 + fullName);

System.out.println("The last name is "

 + lastName);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-17

Extracting Substrings

Address “Cynthia Susan Smith”

The fullName variable holds

the address of a String object.

Address “Smith”

The lastName variable holds

the address of a String object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-18

Extracting Characters to Arrays

• The String class provides methods to extract

substrings in a String object and store them in char

arrays.

– getChars

• Stores a substring in a char array

– toCharArray

• Returns the String object’s contents in an array of char values.

• Example: StringAnalyzer.java

StringAnalyzer.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-19

Returning Modified Strings

• The String class provides methods to return
modified String objects.

– concat

• Returns a String object that is the concatenation of two String
objects.

– replace

• Returns a String object with all occurrences of one character being
replaced by another character.

– trim

• Returns a String object with all leading and trailing whitespace
characters removed.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-20

The valueOf Methods

• The String class provides several overloaded valueOf

methods.

• They return a String object representation of

– a primitive value or

– a character array.

String.valueOf(true) will return "true".

String.valueOf(5.0) will return "5.0".

String.valueOf(‘C’) will return "C".

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-21

The valueOf Methods
boolean b = true;

char [] letters = { 'a', 'b', 'c', 'd', 'e' };

double d = 2.4981567;

int i = 7;

System.out.println(String.valueOf(b));

System.out.println(String.valueOf(letters));

System.out.println(String.valueOf(letters, 1, 3));

System.out.println(String.valueOf(d));

System.out.println(String.valueOf(i));

• Produces the following output:
true

abcde

bcd

2.4981567

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-22

The StringBuilder Class

• The StringBuilder class is similar to the String class.

• However, you may change the contents of StringBuilder
objects.
– You can change specific characters,

– insert characters,

– delete characters, and

– perform other operations.

• A StringBuilder object will grow or shrink in size, as
needed, to accommodate the changes.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-23

StringBuilder Constructors
• StringBuilder()

– This constructor gives the object enough storage space to hold 16

characters.

• StringBuilder(int length)

– This constructor gives the object enough storage space to hold length

characters.

• StringBuilder(String str)

– This constructor initializes the object with the string in str.

– The object will have at least enough storage space to hold the string in

str.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-24

Other StringBuilder Methods

• The String and StringBuilder also have common
methods:

char charAt(int position)

void getChars(int start, int end,

 char[] array, int arrayStart)

int indexOf(String str)

int indexOf(String str, int start)

int lastIndexOf(String str)

int lastIndexOf(String str, int start)

int length()

String substring(int start)

String substring(int start, int end)

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-25

Appending to a StringBuilder Object

• The StringBuilder class has several overloaded versions

of a method named append.

• They append a string representation of their argument to the

calling object’s current contents.

• The general form of the append method is:
object.append(item);

– where object is an instance of the StringBuilder

class and item is:

• a primitive literal or variable.

• a char array, or

• a String literal or object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-26

• After the append method is called, a string representation of
item will be appended to object’s contents.

StringBuilder str = new StringBuilder();

str.append("We sold ");

str.append(12);

str.append(" doughnuts for $");

str.append(15.95);

System.out.println(str);

• This code will produce the following output:
We sold 12 doughnuts for $15.95

Appending to a StringBuilder Object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-27

• The StringBuilder class also has several overloaded

versions of a method named insert

• These methods accept two arguments:

– an int that specifies the position to begin insertion, and

– the value to be inserted.

• The value to be inserted may be

– a primitive literal or variable.

– a char array, or

– a String literal or object.

Appending to a StringBuilder Object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-28

• The general form of a typical call to the insert method.

– object.insert(start, item);

• where object is an instance of the StringBuilder
class, start is the insertion location, and item is:

– a primitive literal or variable.

– a char array, or

– a String literal or object.

• Example:
 Telephone.java
 TelephoneTester.java

Appending to a StringBuilder Object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-29

• The StringBuilder class has a replace method that
replaces a specified substring with a string.

• The general form of a call to the method:

– object.replace(start, end, str);

• start is an int that specifies the starting position of a substring in
the calling object, and

• end is an int that specifies the ending position of the substring.
(The starting position is included in the substring, but the ending
position is not.)

• The str parameter is a String object.

– After the method executes, the substring will be replaced
with str.

Replacing a Substring in a StringBuilder Object

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-30

• The replace method in this code replaces the word

“Chicago” with “New York”.

StringBuilder str = new StringBuilder(

 "We moved from Chicago to Atlanta.");

str.replace(14, 21, "New York");

System.out.println(str);

• The code will produce the following output:
We moved from New York to Atlanta.

Replacing a Substring in a StringBuilder Object

Telephone.java
TelephoneTester.java

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-31

Other StringBuilder Methods

• The StringBuilder class also provides methods to set and
delete characters in an object.
StringBuilder str = new StringBuilder(

 "I ate 100 blueberries!");

// Display the StringBuilder object.

System.out.println(str);

// Delete the '0'.

str.deleteCharAt(8);

// Delete "blue".

str.delete(9, 13);

// Display the StringBuilder object.

System.out.println(str);

// Change the '1' to '5'

str.setCharAt(6, '5');

// Display the StringBuilder object.

System.out.println(str);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Other StringBuilder Methods

• The toString method

– You can call a StringBuilder's toString

method to convert that StringBuilder object to

a regular String

StringBuilder strb = new StringBuilder("This is a test.");

String str = strb.toString();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-33

The StringTokenizer Class

• The StringTokenizer class breaks a string down

into its components, which are called tokens.

• Tokens are a series of words or other items of data

separated by spaces or other characters.

– "peach raspberry strawberry vanilla"

• This string contains the following four tokens: peach,

raspberry, strawberry, and vanilla.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-34

The StringTokenizer Class

• The character that separates tokens is a delimiter.

– "17;92;81;12;46;5"

• This string contains the following tokens: 17, 92, 81,

12, 46, and 5 that are delimited by semi-colons.

• Some programming problems require you to process a

string that contains a list of items.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-35

The StringTokenizer Class
• For example,

• The process of breaking a string into tokens is known as
tokenizing.

• The Java API provides the StringTokenizer class that
allows you to tokenize a string.

• The following import statement must be used in any class
that uses it:
– import java.util.StringTokenizer;

• a date:
•"4-2-2010"

• an operating system pathname,
•/home/rsullivan/data

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-36

StringTokenizer Constructors

Constructor Description

StringTokenizer(

 String str)

The string to be tokenized is passed into str.

Whitespace characters (space, tab, and newline)

are used as delimiters.

StringTokenizer(

 String str,

 String delimiters)

The string to be tokenized is passed into str.

The characters in delimiters will be used as

delimiters.

StringTokenizer(

 String str,

 String delimiters,

 Boolean returnDelimeters)

The string to be tokenized is passed into str.

The characters in delimiters will be used as

delimiters. If the returnDelimiters parameter is

set to true, the delimiters will be included as

tokens. If this parameter is set to false, the

delimiters will not be included as tokens.

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-37

Creating StringTokenizer Objects

• To create a StringTokenizer object with the default
delimiters (whitespace characters):
StringTokenizer strTokenizer =

 new StringTokenizer("2 4 6 8");

• To create a StringTokenizer object with the hyphen
character as a delimiter:
StringTokenizer strTokenizer =

 new StringTokenizer("8-14-2004", "-");

• To create a StringTokenizer object with the hyphen
character as a delimiter, returning hyphen characters as
tokens as well:
StringTokenizer strTokenizer =

 new StringTokenizer("8-14-2004", "-", true);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-38

StringTokenizer Methods

• The StringTokenizer class provides:

– countTokens

• Count the remaining tokens in the string.

– hasMoreTokens

• Are there any more tokens to extract?

– nextToken

• Returns the next token in the string.

• Throws a NoSuchElementException if there are no more

tokens in the string.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-39

Extracting Tokens

• Loops are often used to extract tokens from a string.
StringTokenizer strTokenizer =

 new StringTokenizer("One Two Three");

while (strTokenizer.hasMoreTokens())

{

 System.out.println(strTokenizer.nextToken());

}

• This code will produce the following output:
One

Two

Three

• Examples: DateComponent.java, DateTester.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-40

Multiple Delimiters

• The default delimiters for the StringTokenizer class

are the whitespace characters.

– \n\r\t\b\f

• Other multiple characters can be used as delimiters in the

same string.

– joe@gaddisbooks.com

• This string uses two delimiters: @ and .

• If non-default delimiters are used

– The String class trim method should be used on

user input strings to avoid having whitespace become

part of the last token.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-41

Multiple Delimiters

• To extract the tokens from this string we must specify both
characters as delimiters to the constructor.

StringTokenizer strTokenizer =

new StringTokenizer("joe@gaddisbooks.com", "@.");

while (strTokenizer.hasMoreTokens())

{

System.out.println(strTokenizer.nextToken());

}

• This code will produce the following output:
joe

gaddisbooks

com

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-42

The String Class split Method

• Tokenizes a String object and returns an array of String
objects

• Each array element is one token.
// Create a String to tokenize.

String str = "one two three four";

// Get the tokens from the string.

String[] tokens = str.split(" ");

// Display each token.

for (String s : tokens)

 System.out.println(s);

• This code will produce the following output:
one

two

three

four

DateComponent.java
DateTester.java

8/23/2014

8

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-43

Numeric Data Type Wrappers

• Java provides wrapper classes for all of the
primitive data types.

• The numeric primitive wrapper classes are:
Wrapper

Class

Numeric Primitive

Type It Applies To

Byte byte

Double double

Float float

Integer int

Long long

Short short

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-44

Creating a Wrapper Object

• To create objects from these wrapper classes, you can

pass a value to the constructor:
Integer number = new Integer(7);

• You can also assign a primitive value to a wrapper

class object:

 Integer number;

 number = 7;

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-45

The Parse Methods
• Recall from Chapter 2, we converted String input (from
JOptionPane) into numbers. Any String containing a
number, such as “127.89”, can be converted to a numeric
data type.

• Each of the numeric wrapper classes has a static method
that converts a string to a number.

– The Integer class has a method that converts a
String to an int,

– The Double class has a method that converts a
String to a double,

– etc.

• These methods are known as parse methods because their
names begin with the word “parse.”

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-46

The Parse Methods
// Store 1 in bVar.

byte bVar = Byte.parseByte("1");

// Store 2599 in iVar.

int iVar = Integer.parseInt("2599");

// Store 10 in sVar.

short sVar = Short.parseShort("10");

// Store 15908 in lVar.

long lVar = Long.parseLong("15908");

// Store 12.3 in fVar.

float fVar = Float.parseFloat("12.3");

// Store 7945.6 in dVar.

double dVar = Double.parseDouble("7945.6");

• The parse methods all throw a NumberFormatException if
the String object does not represent a numeric value.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-47

The toString Methods

• Each of the numeric wrapper classes has a static
toString method that converts a number to a string.

• The method accepts the number as its argument and
returns a string representation of that number.

int i = 12;

double d = 14.95;

String str1 = Integer.toString(i);

String str2 = Double.toString(d);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-48

The toBinaryString, toHexString, and

toOctalString Methods

• The Integer and Long classes have three
additional methods:
– toBinaryString, toHexString, and
toOctalString

int number = 14;

System.out.println(Integer.toBinaryString(number));

System.out.println(Integer.toHexString(number));

System.out.println(Integer.toOctalString(number));

• This code will produce the following output:
1110

e

16

8/23/2014

9

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-49

MIN_VALUE and MAX_VALUE

• The numeric wrapper classes each have a set of static final
variables
– MIN_VALUE and

– MAX_VALUE.

• These variables hold the minimum and maximum values for a
particular data type.
System.out.println("The minimum value for an "

 + "int is "

 + Integer.MIN_VALUE);

System.out.println("The maximum value for an "

 + "int is "

 + Integer.MAX_VALUE);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-50

Autoboxing and Unboxing

• You can declare a wrapper class variable and assign a value:

 Integer number;
 number = 7;

• You nay think this is an error, but because number is a wrapper
class variable, autoboxing occurs.

• Unboxing does the opposite with wrapper class variables:
Integer myInt = 5; // Autoboxes the value 5

int primitiveNumber;

primitiveNumber = myInt; // unboxing

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-51

Autoboxing and Unboxing

• You rarely need to declare numeric wrapper class objects,
but they can be useful when you need to work with
primitives in a context where primitives are not permitted

• Recall the ArrayList class, which works only with
objects.

ArrayList<int> list =

 new ArrayList<int>(); // Error!

ArrayList<Integer> list =

 new ArrayList<Integer>(); // OK!

• Autoboxing and unboxing allow you to conveniently use
ArrayLists with primitives.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 9-52

Problem Solving

• Dr. Harrison keeps student scores in an Excel file.

This can be exported as a comma separated text file.

Each student’s data will be on one line. We want to

write a Java program that will find the average for

each student. (The number of students changes each

year.)

• Solution: TestScoreReader.java, TestAverages.java

TestScoreReader.java
TestAverages.java

