
8/23/2014

1

Chapter 12:

A First Look at GUI Applications

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-2

Chapter Topics

Chapter 12 discusses the following main topics:

– Introduction

– Creating Windows

– Equipping GUI Classes with a main method

– Layout Managers

– Radio Buttons and Check Boxes

– Borders

– Focus on Problem Solving: Extending Classes from
JPanel

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-3

Introduction

• Many Java application use a graphical user interface
or GUI (pronounced “gooey”).

• A GUI is a graphical window or windows that provide
interaction with the user.

• GUI’s accept input from:

– the keyboard

– a mouse.

• A window in a GUI consists of components that:

– present data to the user

– allow interaction with the application.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-4

Introduction

• Some common GUI components are:

– buttons, labels, text fields, check boxes, radio buttons,
combo boxes, and sliders.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-5

JFC, AWT, Swing

• Java programmers use the Java Foundation Classes
(JFC) to create GUI applications.

• The JFC consists of several sets of classes, many of
which are beyond the scope of this book.

• The two sets of JFC classes that we focus on are AWT
and Swing classes.

• Java is equipped with a set of classes for drawing
graphics and creating graphical user interfaces.

• These classes are part of the Abstract Windowing
Toolkit (AWT).

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-6

JFC, AWT, Swing

• The AWT allows creation of applications and applets

with GUI components.

• The AWT does not actually draw user interface

components on the screen.

• The AWT communicates with a layer of software,

peer classes.

• Each version of Java for a particular operating system

has its own set of peer classes.

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-7

JFC, AWT, Swing

• Java programs using the AWT:

– look consistent with other applications on the same
system.

– can offer only components that are common to all the
operating systems that support Java.

• The behavior of components across various
operating systems can differ.

• Programmers cannot easily extend the AWT
components.

• AWT components are commonly called heavyweight
components.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-8

JFC, AWT, Swing

• Swing was introduced with the release of Java 2.

• Swing is a library of classes that provide an improved

alternative for creating GUI applications and applets.

• Very few Swing classes rely on peer classes, so they are

referred to called lightweight components.

• Swing draws most of its own components.

• Swing components have a consistent look and predictable

behavior on any operating system.

• Swing components can be easily extended.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-9

Event Driven Programming

• Programs that operate in a GUI environment must be
event-driven.

• An event is an action that takes place within a
program, such as the clicking of a button.

• Part of writing a GUI application is creating event
listeners.

• An event listener is an object that automatically
executes one of its methods when a specific event
occurs.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-10

javax.swing and java.awt

• In an application that uses Swing classes, it is necessary to
use the following statement:

 import javax.swing.*;

– Note the letter x that appears after the word java.

• Some of the AWT classes are used to determine when
events, such as the clicking of a mouse, take place in
applications.

• In an application that uses an AWT class, it is necessary to
use the following statement.

 import java.awt.*;

 Note that there is no x after java in this package
name.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-11

Creating Windows

• Often, applications need one or more windows

with various components.

• A window is a container, which is simply a

component that holds other components.

• A container that can be displayed as a window

is a frame.

• In a Swing application, you create a frame from

the JFrame class.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-12

Creating Windows

• A frame is a basic window that has:

– a border around it,

– a title bar, and

– a set of buttons for:

• minimizing,

• maximizing, and

• closing the window.

• These standard features are sometimes referred

to as window decorations.

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-13

Creating Windows

• See example: ShowWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-14

Creating Windows

• The following import statement is needed to use the swing
components:
import javax.swing.*;

• In the main method, two constants are declared:
final int WINDOW_WIDTH = 350;

final int WINDOW_HEIGHT = 250;

• We use these constants later in the program to set the size of the
window.

• The window’s size is measured in pixels.

• A pixel (picture element) is one of the small dots that make up a
screen display.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-15

Creating Windows

• An instance of the JFrame class needs to be created:

JFrame window = new JFrame();

• This statement:
– creates a JFrame object in memory and

– assigns its address to the window variable.

• The string that is passed to the setTitle method will
appear in the window’s title bar when it is displayed.

window.setTitle("A Simple Window");

• A JFrame is initially invisible.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-16

Creating Windows

• To set the size of the window:
window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);

• To specify the action to take place when the user clicks on the

close button.

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

• The setDefaultCloseOperation method takes an int

argument which specifies the action.

– JFrame.HIDE_ON_CLOSE - causes the window to be hidden from

view, but the application does not end.

– The default action is JFrame.HIDE_ON_CLOSE.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-17

Creating Windows

• The following code displays the window:

window.setVisible(true);

• The setVisible method takes a boolean

argument.

– true - display the window.

– false - hide the window.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-18

Extending JFrame

• We usually use inheritance to create a new class that extends the
JFrame class.

• When a new class extends an existing class, it inherits many of
the existing class’s members just as if they were part of the new
class.

• These members act just as if they were written into the new
class declaration.

• New fields and methods can be declared in the new class
declaration.

• This allows specialized methods and fields to be added to your
window.

• Examples: SimpleWindow.java, SimpleWindowDemo.java

ShowWindow.java
SimpleWindow.java
SimpleWindowDemo.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-19

Equipping GUI Classes with a main

Method

• Java applications always starts execution with a

method named main.

• The previous example used two separate files:

– SimpleWindow.java -- the class that defines the GUI

window

– SimpleWindowDemo.java – containins the main

method that creates an instance of the SimpleWindow

class.

• Applications can also be written with the main

method directly written into the GUI class.

• See example: EmbeddedMain.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-20

Adding Components

• Swing provides numerous components

that can be added to a window.

• Three fundamental components are:
JLabel : An area that can display text.

JTextField : An area in which the user may type a single

line of input from the keyboard.

JButton : A button that can cause an action to occur

when it is clicked.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-21

Sketch of Kilometer Converter

Graphical User Interface

Window Title

Label

Button

Text Field

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-22

Adding Components

private JLabel message;

private JTextField kilometers;

private JButton calcButton;

…

message = new JLabel(

 "Enter a distance in kilometers");

kilometers = new JTextField(10);

calcButton = new JButton("Calculate");

• This code declares and instantiates three Swing

components.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-23

Adding Components

• A content pane is a container that is part of every
JFrame object.

• Every component added to a JFrame must be added
to its content pane. You do this with the JFrame
class's add method.

• The content pane is not visible and it does not have a
border.

• A panel is also a container that can hold GUI
components.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-24

Adding Components

• Panels cannot be displayed by themselves.

• Panels are commonly used to hold and organize

collections of related components.

• Create panels with the JPanel class.

private JPanel panel;

…

panel = new JPanel();

panel.add(message);

panel.add(kilometers);

panel.add(calcButton);

EmbeddedMain.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-25

Adding Components

• Components are typically placed on a panel

and then the panel is added to the JFrame's

content pane.

add(panel);

• Examples: KiloConverter.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-26

Handling Action Events
• An event is an action that takes place within a program,

such as the clicking of a button.

• When an event takes place, the component that is
responsible for the event creates an event object in memory.

• The event object contains information about the event.

• The component that generated the event object is know as
the event source.

• It is possible that the source component is connected to one
or more event listeners.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-27

Handling Action Events

• An event listener is an object that responds to events.

• The source component fires an event which is passed to

a method in the event listener.

• Event listener classes are specific to each application.

• Event listener classes are commonly written as private

inner classes in an application.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-28

Writing Event Listener Classes as

Private Inner Classes

A class that is defined inside of another class is known as
an inner class

public class Outer

{

 Fields and methods of the Outer class appear here.

 private class Inner

 {

 Fields and methods of the Inner class appear here.

 }

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-29

Event Listeners Must Implement an

Interface

• All event listener classes must implement an interface.

• An interface is something like a class containing one

or more method headers.

• When you write a class that implements an interface,

you are agreeing that the class will have all of the

methods that are specified in the interface.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-30

Handling Action Events
• JButton components generate action events, which require

an action listener class.

• Action listener classes must meet the following requirements:
– It must implement the ActionListener interface.

– It must have a method named actionPerformed.

• The actionPerformed method takes an argument of the
ActionEvent type.

public void actionPerformed(ActionEvent e)

{

 Code to be executed when button is pressed goes here.

}

KiloConverterWindow Phase 1/KiloConverter.java

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-31

Handling Action Events

JButton Component Action Listener Object
void actionPerformed(ActionEvent e)

When the button is pressed …

Event

Object

The JButton component generates an event

object and passes it to the action listener
object's actionPerformed method.

Example:

 KiloConverter.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-32

Registering A Listener

• The process of connecting an event listener object to
a component is called registering the event listener.

• JButton components have a method named
addActionListener.

calcButton.addActionListener(

 new CalcButtonListener());

• When the user clicks on the source button, the action
listener object’s actionPerformed method will
be executed.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-33

Background and Foreground Colors

• Many of the Swing component classes have methods
named setBackground and setForeground.

• setBackground is used to change the color of the
component itself.

• setForeground is used to change the color of the
text displayed on the component.

• Each method takes a color constant as an argument.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-34

Color Constants

• There are predefined constants that you can use for colors.

Color.BLACK Color.BLUE

Color.CYAN Color.DARK_GRAY

Color.GRAY Color.GREEN

Color.LIGHT_GRAY Color.MAGENTA

Color.ORANGE Color.PINK

Color.RED Color.WHITE

Color.YELLOW

• Examples: ColorWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-35

The ActionEvent Object

• Event objects contain certain information about the
event.

• This information can be obtained by calling one of
the event object’s methods.

• Two of these methods are:

– getSource - returns a reference to the object that
generated this event.

– getActionCommand - returns the action command
for this event as a String.

• Example:

– EventObject.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-36

Layout Managers

• An important part of designing a GUI application is

determining the layout of the components.

• The term layout refers to the positioning and sizing

of components.

• In Java, you do not normally specify the exact

location of a component within a window.

• A layout manager is an object that:

– controls the positions and sizes of components, and

– makes adjustments when necessary.

KiloConverterWindow Phase 2/KiloConverter.java
ColorWindow.java
EventObject.java

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-37

Layout Managers

• The layout manager object and the container work

together.

• Java provides several layout managers:

– FlowLayout - Arranges components in rows. This is the

default for panels.

– BorderLayout - Arranges components in five regions:

• North, South, East, West, and Center.

• This is the default layout manager for a JFrame object’s content

pane.

– GridLayout - Arranges components in a grid with rows

and columns.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-38

Layout Managers

• The Container class is one of the base classes that many

components are derived from.

• Any component that is derived from the Container class can

have a layout manager added to it.

• You add a layout manager to a container by calling the
setLayout method.

JPanel panel = new JPanel();

panel.setLayout(new BorderLayout());

• In a JFrame constructor you might use:
setLayout(new FlowLayout());

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-39

FlowLayout Manager

• FlowLayout is the default layout manager for

JPanel objects.

• Components appear horizontally, from left to

right, in the order that they were added. When

there is no more room in a row, the next

components “flow” to the next row.

• See example: FlowWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-40

FlowLayout Manager

• The FlowLayout manager allows you to align components:

– in the center of each row

– along the left or right edges of each row.

• An overloaded constructor allows you to pass:

– FlowLayout.CENTER,

– FlowLayout.LEFT, or

– FlowLayout.RIGHT.

• Example:

 setLayout(new FlowLayout(FlowLayout.LEFT));

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-41

FlowLayout Manager

• FlowLayout inserts a gap of five pixels between
components, horizontally and vertically.

• An overloaded FlowLayout constructor allows these to be
adjusted.

• The constructor has the following format:

FlowLayout(int alignment,

 int horizontalGap,

 int verticalGap)

• Example:
setLayout(new FlowLayout(FlowLayout.LEFT, 10, 7));

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-42

BorderLayout Manager
BorderLayout manages five regions

where components can be placed.

FlowWindow.java

8/23/2014

8

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-43

BorderLayout Manager

• See example: BorderWindow.java

• A component placed into a container that is managed
by a BorderLayout must be placed into one of five
regions:
– BorderLayout.NORTH

– BorderLayout.SOUTH

– BorderLayout.EAST

– BorderLayout.WEST

– BorderLayout.CENTER

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-44

BorderLayout Manager

• Each region can hold only one component at a time.

• When a component is added to a region, it is stretched so it fills

up the entire region.

• BorderLayout is the default manager for JFrame objects.

add(button, BorderLayout.NORTH);

• If you do not pass a second argument to the add method, the

component will be added to the center region.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-45

BorderLayout Manager

• Normally the size of a button is just large enough to

accommodate the text that it displays

• The buttons displayed in BorderLayout region will

not retain their normal size.

• The components are stretched to fill all of the space in

their regions.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-46

BorderLayout Manager

• If the user resizes the window, the sizes of the
components will be changed as well.

• BorderLayout manager resizes components:

– placed in the north or south regions may be resized
horizontally so it fills up the entire region,

– placed in the east or west regions may be resized vertically
so it fills up the entire region.

– A component that is placed in the center region may be
resized both horizontally and vertically so it fills up the
entire region.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-47

BorderLayout Manager

• By default there is no gap between the regions.

• An overloaded BorderLayout constructor allows
horizontal and vertical gaps to be specified (in pixels).

• The constructor has the following format

 BorderLayout(int horizontalGap, int verticalGap)

• Example:
 setLayout(new BorderLayout(5,10));

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-48

Nesting Components in a Layout

• Adding components to panels and then nesting the

panels inside the regions can overcome the single

component limitation of layout regions.

• By adding buttons to a JPanel and then adding the

JPanel object to a region, sophisticated layouts can

be achieved.

• See example:BorderPanelWindow.java

BorderWindow.java
BorderPanelWindow.java

8/23/2014

9

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-49

GridLayout Manager
GridLayout creates a grid with rows and columns, much

like a spreadsheet. A container that is managed by a
GridLayout object is divided into equally sized cells.

columns

rows

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-50

GridLayout Manager

• GridLayout manager follows some simple
rules:

– Each cell can hold only one component.

– All of the cells are the size of the largest component
placed within the layout.

– A component that is placed in a cell is automatically
resized to fill up any extra space.

• You pass the number of rows and columns as
arguments to the GridLayout constructor.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-51

GridLayout Manager

• The general format of the constructor:
GridLayout(int rows, int columns)

• Example
 setLayout(new GridLayout(2, 3));

• A zero (0) can be passed for one of the

arguments but not both.

– passing 0 for both arguments will cause an

IllegalArgumentException to be thrown.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-52

GridLayout Manager

25 24 23 22 21

20 19 18 17 16

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

• Components are added to a GridLayout in

the following order (for a 5×5 grid):

Example:

GridWindow.java

GridLayout also accepts

nested components:

Example:

GridPanelWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-53

Radio Buttons

• Radio buttons allow the user to select one choice
from several possible options.

• The JRadioButton class is used to create radio
buttons.

• JRadioButton constructors:
– JRadioButton(String text)

– JRadioButton(String text, boolean selected)

• Example:
JRadioButton radio1 = new JRadioButton("Choice 1");

or

JRadioButton radio1 = new JRadioButton(

 "Choice 1", true);

Button appears

already selected

when true

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-54

Button Groups

• Radio buttons normally are grouped together.

• In a radio button group only one of the radio buttons in
the group may be selected at any time.

• Clicking on a radio button selects it and automatically
deselects any other radio button in the same group.

• An instance of the ButtonGroup class is a used to
group radio buttons

GridWindow.java
GridPanelWindow.java

8/23/2014

10

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-55

Button Groups

• The ButtonGroup object creates the mutually

exclusive relationship between the radio buttons that it

contains.

JRadioButton radio1 = new JRadioButton("Choice 1",

 true);

JRadioButton radio2 = new JRadioButton("Choice 2");

JRadioButton radio3 = new JRadioButton("Choice 3");

ButtonGroup group = new ButtonGroup();

group.add(radio1);

group.add(radio2);

group.add(radio3);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-56

Button Groups

• ButtonGroup objects are not containers like

JPanel objects, or content frames.

• If you wish to add the radio buttons to a panel or a

content frame, you must add them individually.

panel.add(radio1);

panel.add(radio2);

panel.add(radio3);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-57

Radio Button Events

• JRadioButton objects generate an action event

when they are clicked.

• To respond to an action event, you must write an

action listener class, just like a JButton event

handler.

• See example: MetricConverter.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-58

Determining Selected Radio Buttons

• The JRadioButton class’s isSelected method

returns a boolean value indicating if the radio button

is selected.

if (radio.isSelected())

{

 // Code here executes if the radio

 // button is selected.

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-59

Selecting a Radio Button in Code

• It is also possible to select a radio button in code with

the JRadioButton class’s doClick method.

• When the method is called, the radio button is selected

just as if the user had clicked on it.

• As a result, an action event is generated.

radio.doClick();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-60

Check Boxes

• A check box appears as a small box with a label
appearing next to it.

• Like radio buttons, check boxes may be selected or
deselected at run time.

• When a check box is selected, a small check mark
appears inside the box.

• Check boxes are often displayed in groups but they are
not usually grouped in a ButtonGroup.

MetricConverter.java

8/23/2014

11

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-61

Check Boxes

• The user is allowed to select any or all of the check
boxes that are displayed in a group.

• The JCheckBox class is used to create check
boxes.

• Two JCheckBox constructors:
JCheckBox(String text)

JCheckBox(String text, boolean selected)

• Example:
JCheckBox check1 = new JCheckBox("Macaroni");

or

JCheckBox check1 = new JCheckBox("Macaroni",

 true);

Check appears

in box if true

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-62

Check Box Events

• When a JCheckBox object is selected or deselected,

it generates an item event.

• Handling item events is similar to handling action

events.

• Write an item listener class, which must meet the

following requirements:

– It must implement the ItemListener interface.

– It must have a method named itemStateChanged.

• This method must take an argument of the ItemEvent type.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-63

Check Box Events

• Create an object of the class

• Register the item listener object with the

JCheckBox component.

• On an event, the itemStateChanged

method of the item listener object is

automatically run

– The event object is passed in as an argument.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-64

Determining Selected Check Boxes

• The isSelected method will determine whether a

JCheckBox component is selected.

• The method returns a boolean value.
if (checkBox.isSelected())

{

 // Code here executes if the check

 // box is selected.

}

• See example: ColorCheckBoxWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-65

Selecting Check Boxes in Code

• It is possible to select check boxes in code with the

JCheckBox class’s doClick method.

• When the method is called, the check box is selected

just as if the user had clicked on it.

• As a result, an item event is generated.

checkBox.doClick();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-66

Borders

• Windows have a more organized look if related
components are grouped inside borders.

• You can add a border to any component that is
derived from the JComponent class.

– Any component derived from JComponent inherits a
method named setBorder

ColorCheckBoxWindow.java

8/23/2014

12

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-67

Borders

• The setBorder method is used to add a border to
the component.

• The setBorder method accepts a Border object as
its argument.

• A Border object contains detailed information
describing the appearance of a border.

• The BorderFactory class, which is part of the
javax.swing package, has static methods that
return various types of borders.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-68

Border BorderFactory Method Description

Compound

border
createCompoundBorder

A border that has two parts: an inside edge

and an outside edge. The inside and outside

edges can be any of the other borders.

Empty border createEmptyBorder A border that contains only empty space.

Etched border createEtchedBorder
A border with a 3D appearance that looks

“etched” into the background.

Line border createLineBorder A border that appears as a line.

Lowered

bevel border
createLoweredBevelBorder

A border that looks like beveled edges. It has

a 3D appearance that gives the illusion of

being sunken into the surrounding

background.

Matte border createMatteBorder
A line border that can have edges of different

thicknesses.

Raised bevel

border
createRaisedBevelBorder

A border that looks like beveled edges. It has

a 3D appearance that gives the illusion of

being raised above the surrounding

background.

Titled border createTitledBorder An etched border with a title.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-69

The Brandi’s Bagel House

Application

• A complex application that uses numeroous

components can be constructed from several

specialized panel components, each containing other

components and related code such as event listeners.

• Examples:

 GreetingPanel.java, BagelPanel.java,

 ToppingPanel.java, CoffeePanel.java,

 OrderCalculatorGUI.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-70

Splash Screens

• A splash screen is a graphic image that is

displayed while an application loads into

memory and starts up.

• A splash screen keeps the user's attention while

a large application loads and executes.

• Beginning with Java 6, you can display splash

screens with your Java applications.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-71

Splash Screens

• To display the splash screen you use the java command in the

following way when you run the application:

java -splash:GraphicFileName ClassFileName

• GraphicFileName is the name of the file that contains the

graphic image, and ClassFileName is the name of the .class fi le

that you are running.

• The graphic file can be in the GIF, PNG, or JPEG formats.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 12-72

Using Console Output to Debug a GUI

• Display variable values, etc. as your application
executes to identify logic errors
– Use System.out.println()

// For debugging, display the text entered, and

// its value converted to a double.

 System.out.println("Reading " + str +

 " from the text field.");

 System.out.println("Converted value: " +

 Double.parseDouble(str));

• See example: KiloConverter.java

Brandi's Bagel House/GreetingPanel.java
Brandi's Bagel House/BagelPanel.java
Brandi's Bagel House/ToppingPanel.java
Brandi's Bagel House/CoffeePanel.java
Brandi's Bagel House/OrderCalculatorGUI.java
KiloConverterWindow Phase 3/KiloConverter.java

