
8/23/2014

1

Chapter 13:

Advanced GUI Applications

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-2

Chapter Topics

Chapter 13 discusses the following main topics:

– The Swing and AWT Class Hierarchy

– Read-Only Text Fields

– Lists

– Combo Boxes

– Displaying Images in Labels and Buttons

– Mnemonics and Tool Tips

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-3

Chapter Topics

Chapter 13 discusses the following main topics:

– File Choosers and Color Choosers

– Menus

– More about Text Components: Text Areas and

Fonts

– Sliders

– Look and Feel

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-4

The Swing and

AWT Class Hierarchy

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-5

Read Only Text Fields

• Read only text fields are a different way to use the
JTextField component.

• The JTextField component has a method named
setEditable:

setEditable(boolean editable)

• By default a text field is editable.

• The setEditable method must be called and passed false to
make the field read-only.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-6

Lists

• A list is a component that displays a list of items and
allows the user to select items from the list.

• The JList component is used for creating lists.

• When an instance of the JList class is created, an
array of objects is passed to the constructor.
JList (Object[] array)

• The JList component uses the array to create the list
of items.
String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JList nameList = new JList(names);

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-7

List Selection Modes

• The JList component can operate in any of the

following selection modes:

– Single Selection Mode - Only one item can be selected at a

time.

– Single Interval Selection Mode - Multiple items can be

selected, but they must be in a single interval. An interval is

a set of contiguous items.

– Multiple Interval Selection Mode - In this mode multiple

items may be selected with no restrictions.

• This is the default selection mode.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-8

List Selection Modes

Single selection mode allows

only one item to be selected

at a time.

Multiple interval selection mode

allows multiple items to be selected

with no restrictions.

Single interval selection mode allows

a single interval of contiguous items

to be selected.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-9

List Selection Modes

• You change a JList component’s selection mode

with the setSelectionMode method.

• The method accepts an int argument that determines

the selection mode:
– ListSelectionModel.SINGLE_SELECTION

– ListSelectionModel.SINGLE_INTERVAL_SELECTION

– ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

• Example:
nameList.setSelectionMode(

 ListSelectionModel.SINGLE_SELECTION);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-10

List Events

• When an item in a JList object is selected it generates a list
selection event.

• The event is handled by an instance of a list selection listener
class, which must meet the following requirements:
– It must implement the ListSelectionListener interface.

– It must have a method named valueChanged. This method must take an
argument of the ListSelectionEvent type.

• Use the addListSelectionListener method of the JList
class to register the instance of the list selection listener class with
the list object.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-11

List Events

• When the JList component generates an event:

– it automatically executes the valueChanged

method of the list selection listener object

– It passes the event object as an argument.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-12

Retrieving Selected Items
• You may use:

• getSelectedValue or

• getSelectedIndex

– to determine which item in a list is currently selected.

• getSelectedValue returns a reference to the item that is
currently selected.
String selectedName;

selectedName = (String)nameList.getSelectedValue();

• The return value must be cast to String is required in order to
store it in the selectedName variable.

• If no item in the list is selected, the method returns null.

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-13

Retrieving Selected Items
• The getSelectedIndex method returns the index of the

selected item, or –1 if no item is selected.

• Internally, the items that are stored in a list are numbered
(similar to an array).

• Each item’s number is called its index.

• The first item has the index 0.

• You can use the index of the selected item to retrieve the item
from an array.

String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JList nameList = new JList(names);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-14

Retrieving Selected Items

• This code could be used to determine the

selected item:
int index;

String selectedName;

index = nameList.getSelectedIndex();

if (index != -1)

 selectedName = names[index];

• Example: ListWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-15

Bordered Lists

• The setBorder method can be used to draw a

border around a JList.
monthList.setBorder(

 BorderFactory.createLineBorder(Color.black,1));

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-16

Adding A Scroll Bar To a List

• By default, a list component is large enough to display
all of the items it contains.

• Sometimes a list component contains too many items to
be displayed at once.

• Most GUI applications display a scroll bar on list
components that contain a large number of items.

• List components do not automatically display a scroll
bar.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-17

Adding A Scroll Bar To a List

• To display a scroll bar on a list component, follow

these general steps.

1. Set the number of visible rows for the list component.

2. Create a scroll pane object and add the list component to it.

3. Add the scroll pane object to any other containers, such as

panels.

• For this list:
String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JList nameList = new JList(names);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-18

Adding A Scroll Bar To a List

• Establish the size of the list component.
nameList.setVisibleRowCount(3);

• Create a scroll pane object and add the list component to it.

• A scroll pane object is a container that displays scroll bars on any
component it contains.

• The JScrollPane class to create a scroll pane object.

• We pass the object that we wish to add to the scroll pane as an
argument to the JScrollPane constructor.

JScrollPane scrollPane = new

 JScrollPane(nameList);

ListWindow.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-19

Adding A Scroll Bar To a List

• Add the scroll pane object to any other containers that

are necessary for our GUI.
JPanel panel = new JPanel();

panel.add(scrollPane);

add(panel);

• When the list component is displayed, it will appear

with:

– Three items showing at a time and

– scroll bars:

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-20

Adding A Scroll Bar To a List

• By default, JList components added to a JScrollPane

object only display a scroll bar if there are more items in the list

than there are visible rows.

• When a JList component is added to a JScrollPane

object, a border will automatically appear around the list.

• Example: ListWindowWithScroll.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-21

Adding Items to an Existing List

• The setListData method allows the adding of

items in an existing JList component.

void setListData(Object[] data)

• This replaces any items that are currently displayed in

the component.

• This can be used to add items to an empty list.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-22

Adding Items to an Existing List

• You can create an empty list by using the JList

component’s no-parameter constructor:

JList nameList = new JList();

• Items can be added to the list:

String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

nameList.setListData(names);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-23

Single Interval Selection Mode
• A list is set to single interval selection mode by passing the

constant

ListSelectionModel.SINGLE_INTERVAL_SELECTION

to the component’s setSelectionMode method.

• An interval is a set of contiguous items.

• The user selects:

– the first item in the interval by clicking on it

–the last item by holding the Shift key while clicking on it.

• All of the items that appear in the list from the first item through

the last item are selected.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-24

Single Interval Selection Mode
• The getSelectedValue method returns the first item in

the selected interval.

• The getSelectedIndex method returns the index of the
first item in the selected interval.

• To get the entire selected interval, use the
getSelectedValues method.

– This method returns an array of objects, which are the items in the
selected interval.

• The getSelectedIndices method returns an array of int
values that are the indices of all the selected items in the list.

ListWindowWithScroll.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-25

Multiple Interval Selection Mode

• Set multiple interval selection mode by passing the constant

ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

to the component’s setSelectionMode method.

• In multiple interval selection mode:

– multiple items can be selected

– the items do not have to be in the same interval.

• In multiple interval selection mode the user can select single

items or intervals.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-26

Multiple Interval Selection Mode

• The user holds down the Ctrl key while clicking on an item

– it selects the item without deselecting other items.

• The getSelectedValue method returns the first selected

item.

• The getSelectedIndex method returns the index of the

first selected item.

• The getSelectedValues method returns an array of

objects containing the items that are selected.

• The getSelectedIndices method returns an int array

containing the indices of the selected items.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-27

Multiple Interval Selection Mode

Example:

MultipleIntervalSelection.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-28

Combo Boxes
• A combo box presents a drop-down list of items that the user may

select from.

• The JComboBox class is used to create a combo box.

• Pass an array of objects that are to be displayed as the items in the

drop-down list to the constructor.

String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JComboBox nameBox = new JComboBox(names);

• When displayed, the combo box created by this code will initially

appear as the button:

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-29

Combo Boxes

• The button displays the item that is currently

selected.

• The first item in the list is automatically

selected when the combo box is displayed.

• When the user clicks on the button, the drop-

down list appears and the user may select

another item.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-30

Combo Box Events

• When an item in a JComboBox object is selected, it generates

an action event.

• Handle action events with an action event listener class, which
must have an actionPerformed method.

• When the user selects an item in a combo box, the combo box

executes its action event listener’s actionPerformed

method, passing an ActionEvent object as an argument.

MultipleIntervalSelection.java

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-31

Retrieving Selected Items
• There are two methods in the JComboBox class that can be

used to determine which item in a list is currently selected:
– getSelectedItem

– getSelectedIndex

• The getSelectedItem method returns a reference to the
item that is currently selected.
String selectedName;

selectedName = (String) nameBox.getSelectedItem();

• getSelectedItem returns an Object reference so we cast
the return value to a String.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-32

Retrieving Selected Items

• The getSelectedIndex method returns the index
of the selected item.
String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JComboBox nameBox = new JComboBox(names);

• Get the selected item from the names array:
int index;

String selectedName;

index = nameBox.getSelectedIndex();

selectedName = names[index];

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-33

Retrieving Selected Items

• Example:

• ComboBoxWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-34

Editable Combo Boxes

• There are two types of combo boxes:

– uneditable – allows the user to only select items from its list.

– editable – combines a text field and a list.

• It allows the selection of items from the list

• allows the user to type input into the text field

• The setEditable method sets the edit mode for the

component.

String[] names = { "Bill", "Geri", "Greg", "Jean",

"Kirk", "Phillip", "Susan" };

JComboBox nameBox = new JComboBox(names);

nameBox.setEditable(true);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-35

Editable Combo Boxes

• An editable combo box appears as a text field with a small
button displaying an arrow joining it.

• When the user clicks on the button, the drop-down list appears
as shown in the center of the figure.

• The user may:
– select an item from the list.

– type a value into the text field.

• The user is not restricted to the values that appear in the list, and
may type any input into the text field.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-36

Editable Combo Boxes

Note that Sharon is not in the list.

ComboBoxWindow.java

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-37

Displaying Images in Labels and Buttons

• Labels can display text, an image, or both.

• To display an image, create an instance of the ImageIcon class,

which reads the image file.

• The constructor accepts the name of an image file.

• The supported file types are JPEG, GIF, and PNG.

• The name can also contain path information.

ImageIcon image = new ImageIcon("Smiley.gif");

or

ImageIcon image = new ImageIcon(

 "C:\\Chapter 12\\Images\\Smiley.gif");

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-38

Displaying Images in Labels and Buttons

• Display the image in a label by passing the ImageIcon object

as an argument to the JLabel constructor.

JLabel(Icon image)

• The argument passed can be an ImageIcon object or any

object that implements the Icon interface.

ImageIcon image = new ImageIcon("Smiley.gif");

JLabel label = new JLabel(image);

or

JLabel label = new JLabel("Have a nice day!");

label.setIcon(image);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-39

Displaying Images in Labels and Buttons

• Text is displayed to the right of images by default.

• Text alignment can be modified by passing one of the following
to an overloaded constructor:
– SwingConstants.LEFT

– SwingConstants.CENTER

– SwingConstants.RIGHT

• Example:
ImageIcon image = new ImageIcon("Smiley.gif");

JLabel label = new JLabel("Have a nice day!",

 image,

 SwingConstants.RIGHT);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-40

Displaying Images in Labels and Buttons

• Creating a button with an image is similar to that of creating a

label with an image.

ImageIcon image = new ImageIcon("Smiley.gif");

JButton button = new JButton(image);

• To create a button with an image and text:

ImageIcon image = new ImageIcon("Smiley.gif");

JButton button = new JButton(

 "Have a nice day!", image);

button.setIcon(image);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-41

Displaying Images in Labels and Buttons

• To add an image to an existing button:
JButton button = new JButton(

 "Have a nice day!");

ImageIcon image = new ImageIcon("Smiley.gif");

button.setIcon(image);

• You are not limited to small graphical icons when

placing images in labels or buttons.

• Example: MyCatImage.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-42

Mnemonics

• A mnemonic is a key that you press in combination with

the Alt key to quickly access a component.

• These are sometimes referred to as hot keys.

• A hot key is assigned to a component through the

component’s setMnemonic method

• The argument passed to the method is an integer code

that represents the key you wish to assign.

MyCatImage.java

8/23/2014

8

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-43

Mnemonics

• The key codes are predefined constants in the KeyEvent class

(java.awt.event package).

• These constants take the form:

– KeyEvent.VK_x, where x is a key on the keyboard.

• The letters VK in the constants stand for “virtual key”.

– To assign the A key as a mnemonic, use KeyEvent.VK_A.

• Example:

JButton exitButton = new JButton("Exit");

exitButton.setMnemonic(KeyEvent.VK_X);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-44

Mnemonics

• If the letter is in the component’s text, the first

occurrence of that letter will appear underlined.

• If the letter does not appear in the component’s text,

then no letter will appear underlined.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-45

Mnemonics

• You can also assign mnemonics to radio buttons and check

boxes:

JRadioButton rb1 = new

 JRadioButton("Breakfast");

rb1.setMnemonic(KeyEvent.VK_B);

JRadioButton rb2 = new JRadioButton("Lunch");

rb2.setMnemonic(KeyEvent.VK_L);

JCheckBox cb1 = new JCheckBox("Monday");

cb1.setMnemonic(KeyEvent.VK_M);

JCheckBox cb2 = new JCheckBox("Wednesday");

cb2.setMnemonic(KeyEvent.VK_W);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-46

Tool Tips

• A tool tip is text that is displayed in a small box when
the mouse is held over a component.

• The box usually gives a short description of what the
component does.

• Most GUI applications use tool tips as concise help to
the user.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-47

Tool Tips

• Assign a tool tip to a component with the
setToolTipText method.
JButton exitButton = new JButton("Exit");

exitButton.setMnemonic(KeyEvent.VK_X);

exitButton.setToolTipText(

 "Click here to exit.");

 Note the mnemonic x.

Tool tip

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-48

File Choosers

• A file chooser is a specialized dialog box that allows
the user to browse for a file and select it.

8/23/2014

9

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-49

File Choosers
• Create an instance of the JFileChooser class to display a file

chooser dialog box.

• Two of the constructors have the form:
JFileChooser()

JFileChooser(String path)

• The first constructor shown takes no arguments and uses the
default directory as the starting point for all of its dialog boxes.

• The second constructor takes a String argument containing a
valid path. This path will be the starting point for the object’s
dialog boxes.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-50

File Choosers

• A JFileChooser object can display two types of

predefined dialog boxes:

– open file dialog box – lets the user browse for an existing file

to open.

– a save file dialog box – lest the user browse to a location to

save a file.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-51

File Choosers

• To display an open file dialog box, use the showOpenDialog

method.

• General format:

int showOpenDialog(Component parent)

• The argument can be null or a reference to a component.

• If null is passed, the dialog box is normally centered in the

screen.

• If you pass a reference to a component the dialog box is

displayed over the component.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-52

File Choosers

• To display a save file dialog box, use the

showSaveDialog method.

• General format:
int showSaveDialog(Component parent)

• The argument can be either null or a reference to a

component.

• Both methods return an integer that indicates the

action taken by the user to close the dialog box.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-53

File Choosers
• You can compare the return value to one of the following

constants:
– JFileChooser.CANCEL_OPTION – indicates that the user clicked

on the Cancel button.

– JFileChooser.APPROVE_OPTION – indicates that the user clicked
on the OK button.

– JFileChooser.ERROR_OPTION – indicates that an error occurred,
or the user clicked on the standard close button on the window to
dismiss it.

• If the user selected a file, use the getSelectedFile method
to determine the file that was selected.

• The getSelectedFile method returns a File object,
which contains data about the selected file.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-54

File Choosers

• Use the File object’s getPath method to get the
path and file name as a String.

JFileChooser fileChooser = new JFileChooser();

int status = fileChooser.showOpenDialog(null);

if (status == JFileChooser.APPROVE_OPTION)

{

 File selectedFile =

 fileChooser.getSelectedFile();

 String filename = selectedFile.getPath();

 JOptionPane.showMessageDialog(null,

 "You selected " + filename);

}

8/23/2014

10

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-55

Color Choosers

• A color chooser is a specialized dialog box that allows
the user to select a color from a predefined palette of
colors.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-56

Color Choosers

• By clicking the HSB tab you can select a color by specifying

its hue, saturation, and brightness.

• By clicking the RGB tab you can select a color by specifying

its red, green, and blue components.

• The JColorChooser class has a static method named

showDialog, with the following general format:

Color showDialog(Component parent,

 String title, Color initial)

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-57

Color Choosers

• If the first argument is null, the dialog box is
normally centered in the screen.

• If it is a reference to a component the dialog box is
displayed over the component.

• The second argument is the dialog title.

• The third argument indicates the color that appears
initially selected in the dialog box.

• This method returns the color selected by the user.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-58

Color Choosers

• Example:

JPanel panel = new JPanel();

Color selectedColor =

 JColorChooser.showDialog(null,

 "Select a Background Color",

 Color.BLUE);

panel.setBackground(selectedColor);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Menus

• A menu system is a collection of commands organized
in one or more drop-down menus.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-60

Components of A Menu System

• A menu system commonly consists of:
– Menu Bar – A menu bar lists the names of one or menus.

– Menu – A menu is a drop-down list of menu items.

– Menu Item – A menu item can be selected by the user.

– Check box menu item – A check box menu item appears with a small
box beside it.

• The item may be selected or deselected.

– Radio button menu item – A radio button menu item may be selected
or deselected.

– Submenu – A menu within a menu is called a submenu.

– Separator bar – A separator bar is a horizontal bar used to separate
groups of items on a menu.

8/23/2014

11

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-61

Menu Classes
• A menu system is constructed with the following classes:

– JMenuBar – Used to create a menu bar.

• A JMenuBar object can contain JMenu components.

– JMenu – Used to create a menu. A JMenu component can
contain:

• JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem components,

• as well as other JMenu components.

– A submenu is a JMenu component that is inside another JMenu
component.

– JMenuItem – Used to create a regular menu item.

• A JMenuItem component generates an action event when selected.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-62

Menu Classes
– JCheckBoxMenuItem – Used to create a check box menu item.

• The class’s isSelected method returns true if the item is selected, or
false otherwise.

• A JCheckBoxMenuItem component generates an action event when
selected.

– JRadioButtonMenuItem – Used to create a radio button menu
item.

• JRadioButtonMenuItem components can be grouped together in
a ButtonGroup object so that only one of them can be selected at a
time.

• The class’s isSelected method returns true if the item is selected,
or false otherwise.

• A JRadioButtonMenuItem component generates an action event
when selected.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-63

Menu Example

• Menu Example: MenuWindow.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-64

Text Areas

• The JTextField class is used to create text fields.

• A text field is a component that allows the user to enter a

single line of text.

• A text area is like a text field that can accept multiple lines

of input.

• You use the JTextArea class to create a text area.

• The general format of two of the class’s constructors:

JTextArea(int rows, int columns)

JTextArea(String text, int rows, int columns)

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-65

Text Areas

• The JTextArea class provides the getText and setText

methods for getting and setting the text.

String userText = textInput.getText();

textInput.setText("Modified: " + userText);

• JTextArea components do not automatically display scroll

bars.

• You must add a text area to a scroll pane.

JTextArea textInput = JTextArea(20, 40);

JScrollPane scrollPane = new

 JScrollPane(textInput);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-66

Text Areas

• The JScrollPane object displays both vertical and

horizontal scroll bars on a text area.

• By default, the scroll bars are not displayed until they

are needed.

• This behavior can be altered:
scrollPane.setHorizontalScrollBarPolicy(

 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);

scrollPane.setVerticalScrollBarPolicy(

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

MenuWindow.java

8/23/2014

12

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-67

Text Areas

• You can pass one of the following constants as an

argument:

– setHorizontalScrollBarPolicy

• JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED.

• JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

• JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

– setVericalScrollBarPolicy

• JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

• JScrollPane.VERTICAL_SCROLLBAR_NEVER

• JScrollPane.VERTICAL_SCROLLBAR_ALWAYS

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-68

Text Areas

• By default, JTextArea components do not perform line

wrapping.

• To enable line wrapping:

textInput.setLineWrap(true);

• There are two different styles of line wrapping:

– word wrapping – the line breaks always occur between words.

 textInput.setWrapStyleWord(true);

– character wrapping – lines are broken between characters

(default mode).

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-69

Fonts

• Components display according to their font characteristics:

– font – the name of the typeface

– style – can be plain, bold, and/or italic

– size – size of the text in points.

• A component’s setFont method will change the appearance

of the text in the component:

setFont (Font appearance)

• A Font constructor takes three parameters:

Font(String fontName, int style, int size)

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-70

Fonts

• Java guarantees that you will have the fonts:

– Dialog, DialogInput, Monospaced, SansSerif,
and Serif.

• There are three font styles:

– Font.PLAIN, Font.BOLD, and Font.ITALIC.

• Example:
label.setFont(new Font(

 "Serif", Font.BOLD, 24));

• Font styles can be combined adding them.
label.setFont(new Font(

 "Serif", Font.BOLD + Font.ITALIC, 24));

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-71

Sliders

• A slider is a component
that allows the user to
graphically adjust a
number within a range.

• Sliders are created from
the JSlider class.

• They display an image of
a “slider knob” that can be
dragged along a track.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-72

Sliders

• A slider is designed to represent a range of numeric
values.

• As the user moves the knob along the track, the numeric
value is adjusted accordingly.

• Between the minimum and maximum values, major tick
marks are displayed with a label indicating the value at
that tick mark.

• Between the major tick marks are minor tick marks.

8/23/2014

13

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-73

Sliders

• The JSlider constructor has the general format:
JSlider(int orientation, int minValue,

 int maxValue, int initialValue)

• For orientation, one of these constants should be used:

– JSlider.HORIZONTAL

– JSlider.VERTICAL

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-74

Sliders

• Example:
JSlider slider1 = new JSlider(JSlider.HORIZONTAL,

0, 50, 25);

JSlider slider2 = new JSlider(JSlider.VERTICAL, 0,

50, 25);

• Set the major and minor tick mark spacing with:

– setMajorTickSpacing

– setMinorTickSpacing

• Example:

slider1.setMajorTickSpacing(10);

slider1.setMinorTickSpacing(2);

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-75

Sliders

• Display tick marks by calling:

– setPaintTickMarks

slider1.setPaintTickMarks(true);

• Display numeric labels on the slider by calling:

– setPaintLabels

slider1.setPaintLabels(true);

• When the knob’s position is moved, the slider component
generates a change event.

• To handle the change event, write a change listener class.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-76

Sliders

• A change listener class must meet the following
requirements:
– It must implement the ChangeListener interface.

– It must have a method named stateChanged.
• This method must take an argument of the ChangeEvent type.

• To retrieve the current value stored in a JSlider, use
the getValue method.
currentValue = slider1.getValue();

• Example: TempConverter.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-77

Look and Feel

• The appearance of a particular system’s GUI is known
as its look and feel.

• Java allows you to select the look and feel of a GUI
application.

• On most systems, Java’s default look and feel is called
Metal.

• There are also Motif and Windows look and feel
classes for Java.

– Motif is similar to a UNIX look and feel

– Windows is the look and feel of the Windows operating
system.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-78

Look and Feel

• To change an application’s look and feel, call the

UIManager class’s static setLookAndFeel

method.

• Java has a class for each look and feel.

• The setLookAndFeel method takes the fully

qualified class name for the desired look and feel as its

argument.

• The class name must be passed as a string.

TempConverter.java

8/23/2014

14

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-79

Look and Feel

• Metal look and feel:
"javax.swing.plaf.metal.MetalLookAndFeel"

• Motif look and feel:
"com.sun.java.swing.plaf.motif.MotifLookAndFeel"

• Windows look and feel:
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel"

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-80

Look and Feel

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-81

Look and Feel
• Any components that have already been created need to be

updated.
SwingUtilities.updateComponentTreeUI(…);

• This method takes a reference to the component that you want
to update as an argument.

• The UIManager.setLookAndFeel method throws a
number of exceptions:
– ClassNotFoundException

– InstantiationException

– IllegalAccessException

– UnsupportedLookAndFeelException

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-82

Look and Feel

• Example (Motif):
try

{

 UIManager.setLookAndFeel(

 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");

 SwingUtilities.updateComponentTreeUI(this);

}

catch (Exception e)

{

 JOptionPane.showMessageDialog(null,

 "Error setting the look and feel.");

 System.exit(0);

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 13-83

Look and Feel

• Example (Windows):
try

{

 UIManager.setLookAndFeel(

 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

 SwingUtilities.updateComponentTreeUI(this);

}

catch (Exception e)

{

 JOptionPane.showMessageDialog(null,

 "Error setting the look and feel.");

 System.exit(0);

}

