
23-1

TOPICS

A First Look at GUI
Applications with SwingC

H
A

P
T

E
R

23

	 23.1	 Introduction
	 23.2	 Creating Windows
	 23.3	 Layout Managers
	 23.4	 Radio Buttons and Check

Boxes
	 23.5	 Borders

	 23.6	 Focus on Problem Solving: Extending
Classes from JPanel

	 23.7	 Splash Screens
	 23.8	 Using Console Output to Debug

a GUI Application
	 23.9	 Common Errors to Avoid

23.1	 Introduction

CONCEPT:	 In Java, you use the Java Foundation Classes (JFC) to create a graphical
user interface for your application. Within the JFC you use the Abstract
Windowing Toolkit (AWT) or Swing classes to create a graphical user
interface.

In this chapter, we discuss the basics of creating a Java application with a graphical user
interface or GUI (pronounced “gooey”). A GUI is a graphical window or a system of graph-
ical windows that is presented by an application for interaction with the user. In addition
to accepting input from the keyboard, GUIs typically accept input from a mouse as well.

A window in a GUI commonly consists of several components that present data to the user
and/or allow interaction with the application. Some of the common GUI components are
buttons, labels, text fields, check boxes, and radio buttons. Figure 23-1 shows an example
of a window with a variety of components. Table 23-1 describes the components that appear
in the window.

NOTE:   This chapter discusses GUI development using the Swing classes. Oracle has
announced that JavaFX is replacing Swing as the standard GUI library for Java. Swing
will remain part of the Java API for the foreseeable future, however, so we are providing
this chapter for you to use as you make the transition from Swing to JavaFX. To learn
about JavaFX, see Chapters 12, 13, and 14.

M23_GADD7961_04_SE_C23.indd 1 2/12/18 3:28 PM

23-2	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-1  Various GUI components  (Oracle Corporate Counsel)

Table 23-1  Some GUI components

Component Description

Label An area that can display text.

Text field An area in which the user may type a single line of input from the
keyboard.

Combo box A component that displays a drop-down list of items from which the user
may select. A combo box also provides a text field in which the user may
type input. It is called a combo box because it is the combination of a list
and a text field.

Check box A component that has a box that may be checked or unchecked.

List A list from which the user may select an item.

Radio button A component that can be either selected or deselected. Radio buttons
usually appear in groups and allow the user to select one of several
options.

Slider A component that allows the user to select a value by moving a slider
along a track.

Button A button that can cause an action to occur when it is clicked.

The JFC, AWT, and Swing
Java programmers use the Java Foundation Classes (JFC) to create GUI applications. The
JFC consists of several sets of classes, many of which are beyond the scope of this book. The
two sets of JFC classes that we focus on are the AWT and Swing classes. First, we discuss
the differences between them.

Java has been equipped, since its earliest version, with a set of classes for drawing graphics
and creating GUIs. These classes are part of the Abstract Windowing Toolkit (AWT). The
AWT allows programmers to create applications and applets that interact with the user via
windows and other GUI components.

M23_GADD7961_04_SE_C23.indd 2 2/12/18 3:28 PM

	 23.1  Introduction	 23-3

Programmers are limited in what they can do with the AWT classes, however. This is because
the AWT classes do not actually draw user interface components on the screen. Instead, the
AWT classes communicate with another layer of software, known as the peer classes, which
directs the underlying operating system to draw its own built-in components. Each version
of Java that is developed for a particular operating system has its own set of peer classes.
Although this means that Java programs have a look that is consistent with other applica-
tions on the same system, it also leads to some problems.

One problem is that not all operating systems offer the same set of GUI components. For
example, one operating system might provide a sophisticated slider bar component that is
not found on any other platform. Other operating systems might have their own unique
components as well. In order for the AWT to retain its portability, it has to offer only those
components that are common to all the operating systems that support Java.

Another problem is in the behavior of components across various operating systems. A
component on one operating system might have slightly different behavior than the same
component on a different operating system. In addition, the peer classes for some operating
systems reportedly have bugs. As a result, programmers cannot be completely sure how their
AWT programs will behave on different operating systems until they test each one.

A third problem is that programmers cannot easily customize the AWT components. Because
these components rely on the appearance and behavior of the underlying operating system
components, there is little that can be done by the programmer to change their properties.

To remedy these problems, Swing was introduced with the release of Java 2. Swing is a
library of classes that do not replace the AWT, but provide an improved alternative for
creating GUI applications and applets. Very few of the Swing classes rely on an underlying
system of peer classes. Instead, Swing draws most of its own components on the screen. This
means that Swing components can have a consistent look and predictable behavior on any
operating system.

NOTE:  Swing applications can have the look of a specific operating system. The pro-
grammer may choose from a variety of “look and feel” themes.

Swing components can also be easily customized. The Swing library provides many sophis-
ticated components that are not found in the AWT. In this chapter and in Chapter 24, we
primarily use Swing to develop GUI applications. In Chapter 25, we use AWT to develop
applets.

NOTE:  AWT components are commonly called heavyweight components because they
are coupled with their underlying peer classes. Very few of the Swing components are
coupled with peer classes, so they are referred to as lightweight components.

M23_GADD7961_04_SE_C23.indd 3 2/12/18 3:28 PM

23-4	 Chapter 23    A First Look at GUI Applications with Swing

Event-Driven Programming
Programs that operate in a GUI environment must be event-driven. An event is an action that
takes place within a program, such as the clicking of a button. Part of writing a GUI appli-
cation is creating event listeners. An event listener is an object that automatically executes
one of its methods when a specific event occurs. If you wish for an application to perform
an operation when a particular event occurs, you must create an event listener object that
responds when that event takes place.

The javax.swing and java.awt Packages
In this chapter, we use the Swing classes for all of the graphical components that we create
in our GUIs. The Swing classes are part of the javax.swing package. (Take note of the
letter x that appears after the word java.) The following import statement will be used in
every applicaton:

import javax.swing.*;

We also use some of the AWT classes to determine when events, such as the clicking of a
mouse, take place in our applications. The AWT classes are part of the java.awt package.
(Note that there is no x after java in this package name.) Programs that use the AWT classes
will have the following import statement:

import java.awt.*;

Creating a
Simple GUI
Application

VideoNote

23.2	 Creating Windows

CONCEPT:	 You can use Swing classes to create windows containing various GUI
components.

The JOptionPane dialog boxes that you learned about in Chapter 2 allow you to easily
display messages and gather input. If an application is to provide a full graphical user inter-
face, however, much more is needed. Often, applications need one or more windows with
various components that allow the user to enter and/or select data and interact with the
application. For example, the window that is displayed in Figure 23-1 has several different
components within it.

A window is a component, but because a window contains other components, it is more
appropriately considered a container. A container is simply a component that holds other
components. In GUI terminology, a container that can be displayed as a window is known
as a frame. A frame appears as a basic window that has a border around it, a title bar, and a
set of buttons for minimizing, maximizing, and closing the window. In a Swing application,
you create a frame object from the JFrame class.

There are a number of steps involved in creating a window, so let’s look at an example. The
program in Code Listing 23-1 displays the window shown in Figure 23-2.

M23_GADD7961_04_SE_C23.indd 4 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-5

Code Listing 23-1   (ShowWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This program displays a simple window with a title. The
 5 application exits when the user clicks the close button.
 6 */
 7
 8 public class ShowWindow
 9 {
10 public static void main(String[] args)
11 {
12 final int WINDOW_WIDTH = 350; // Window width in pixels
13 final int WINDOW_HEIGHT = 250; // Window height in pixels
14
15 // Create a window.
16 JFrame window = new JFrame();
17
18 // Set the title.
19 window.setTitle("A Simple Window");
20
21 // Set the size of the window.
22 window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
23
24 // Specify what happens when the close button is clicked.
25 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
26
27 // Display the window.
28 window.setVisible(true);
29 }
30 }

Figure 23-2  Window displayed by ShowWindow.java  (Oracle Corporate Counsel)

M23_GADD7961_04_SE_C23.indd 5 2/12/18 3:28 PM

23-6	 Chapter 23    A First Look at GUI Applications with Swing

The window shown in Figure 23-2 was produced on a system running Microsoft Windows.
Notice that the window has a border and a title bar with “A Simple Window” displayed in
it. In addition, it has the standard Microsoft Windows buttons in the upper-right corner:
a minimize button, a maximize button, and a close button. These standard features are
sometimes referred to as decorations. If you run this program, you will see the window
displayed on your screen. When you click on the close button, the window disappears and
the program terminates.

Let’s take a closer look at the code. First, notice that the following import statement is used
in line 1:

import javax.swing.*; // Needed for Swing classes

Any program that uses a Swing class, such as JFrame, must have this import statement. In
lines 12 and 13 the two constants WINDOW_WIDTH and WINDOW_HEIGHT are declared as follows:

final int WINDOW_WIDTH = 350; // Window width in pixels
final int WINDOW_HEIGHT = 250; // Window height in pixels

We use these constants later in the program to set the size of the window. The window’s
size is measured in pixels. A pixel is one of the small dots that make up a screen display; the
resolution of your monitor is measured in pixels. For example, if your monitor’s resolution
is 1024 by 768, that means the width of your screen is 1024 pixels, and the height of your
screen is 768 pixels.

Next, we create an instance of the JFrame class with the following statement in line 16:

JFrame window = new JFrame();

This statement creates a JFrame object in memory and assigns its address to the window
variable. This statement does not display the window on the screen, however. A JFrame is
initially invisible.

In line 19 we call the JFrame object’s setTitle method as follows:

window.setTitle("A Simple Window");

The string that is passed as an argument to setTitle will appear in the window’s title bar
when it is displayed. In line 22 we call the JFrame object’s setSize method to set the win-
dow’s size as follows:

window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);

The two arguments passed to setSize specify the window’s width and height in pixels. In
this program we pass the constants WINDOW_WIDTH and WINDOW_HEIGHT, which we declared
earlier, to set the size of the window to 350 pixels by 250 pixels.

In line 25 we specify the action that we wish to take place when the user clicks on the close
button, which appears in the upper-right corner of the window as follows:

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

There are a number of actions that can take place when the user clicks on the close button. The
setDefaultCloseOperation method takes an int argument, which specifies the action. In
this statement, we pass the constant JFrame.EXIT_ON_CLOSE, which causes the application

M23_GADD7961_04_SE_C23.indd 6 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-7

to end with a System.exit method call. If we had passed JFrame.HIDE_ON_CLOSE, the
window would be hidden from view, but the application would not end. The default action
is JFrame.HIDE_ON_CLOSE.

Last, in line 28, we use the following code to display the window:

window.setVisible(true);

The setVisible method takes a boolean argument. If the argument is true, the window
is made visible. If the argument is false, the window is hidden.

Using Inheritance to Extend the JFrame Class
The program in Code Listing 23-1 performs a very simple operation: It creates an instance of
the JFrame class and displays it. Most of the time, your GUI applications will be much more
involved than this. As you progress through this chapter, you will add numerous components
and capabilities to the windows that you create.

Instead of simply creating an instance of the JFrame class, as shown in Code Listing 23-1, a
more common technique is to use inheritance to create a new class that extends the JFrame class.

IF YOU’VE SKIPPED AHEAD TO THIS CHAPTER:  This chapter is written so
that you can skip ahead to it any time after Chapter 6. Reading about inheritance and
interfaces in Chapter 10 would be helpful; but if you have not read that material yet, the
following summarizes what you need to know for this chapter.

When a new class extends an existing class, it inherits many of the existing class’s mem-
bers just as if they were part of the new class. For example, you saw how the program in
Code Listing 23-1 created a JFrame object and then called four of its methods: setTitle,
setSize, setDefaultCloseOperation, and setVisible. These methods are all mem-
bers of the JFrame class. If you create a new class that extends the JFrame class, the new
class will automatically inherit these methods. Then these methods can be called from an
instance of the new class just as if they were written into its declaration. You can add your
own custom code to the new class, making it a specialized, or extended, version of the
JFrame class. Programs can then create instances of your new specialized class instead of
the more generic JFrame class.

Let’s look at the SimpleWindow class in Code Listing 23-2. This is an example of a class that
extends the JFrame class.

Code Listing 23-2   (SimpleWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This class extends the JFrame class. Its constructor displays
 5 a simple window with a title. The application exits when the

M23_GADD7961_04_SE_C23.indd 7 2/12/18 3:28 PM

23-8	 Chapter 23    A First Look at GUI Applications with Swing

Notice the class header in line 9 as follows:

public class SimpleWindow extends JFrame

The words extends JFrame indicate that the SimpleWindow class extends the JFrame class.
This means that the SimpleWindow class inherits members of the JFrame class, such as the
setTitle, setSize, setDefaultCloseOperation, and setVisible methods, just as if
they were written into the SimpleWindow class declaration. Now look at the constructor. In
lines 17 and 18 we declare the WINDOW_WIDTH and WINDOW_HEIGHT constants, which will be
used to establish the size of the window as follows:

final int WINDOW_WIDTH = 350; // Window width in pixels
final int WINDOW_HEIGHT = 250; // Window height in pixels

In line 21 we call the setTitle method to set the text for the window’s title bar as follows:

setTitle("A Simple Window");

Notice that we are calling the method without an object reference and a dot preceding it.
This is because the method was inherited from the JFrame class, and we can call it just as if
it were written into the SimpleWindow class declaration.

The rest of the constructor calls the setSize, setDefaultCloseOperation, and
setVisible methods. All that is necessary to display the window is to create an instance of

 6 user clicks the close button.
 7 */
 8
 9 public class SimpleWindow extends JFrame
10 {
11 /**
12 Constructor
13 */
14
15 public SimpleWindow()
16 {
17 final int WINDOW_WIDTH = 350; // Window width in pixels
18 final int WINDOW_HEIGHT = 250; // Window height in pixels
19
20 // Set this window's title.
21 setTitle("A Simple Window");
22
23 // Set the size of this window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify what happens when the close button is clicked.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Display the window.
30 setVisible(true);
31 }
32 }

M23_GADD7961_04_SE_C23.indd 8 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-9

the SimpleWindow class, as shown in the program in Code Listing 23-3. When this program
runs, the window that was previously shown in Figure 23-2 is displayed. Remember, the
SimpleWindow class is an extended version of the JFrame class. When we create an instance
of the SimpleWindow class, we are really creating an instance of the JFrame class, with some
customized code added to its constructor.

Code Listing 23-4   (EmbeddedMain.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This class defines a GUI window and has its own
 5 main method.
 6 */
 7
 8 public class EmbeddedMain extends JFrame
 9 {
10 final int WINDOW_WIDTH = 350; // Window width in pixels
11 final int WINDOW_HEIGHT = 250; // Window height in pixels

Equipping GUI Classes with a main Method
You know that a Java application always starts execution with a static method named main.
The previous example consists of two separate files:

•	 SimpleWindow.java: This file contains the SimpleWindow class, which defines a GUI
window.

•	 SimpleWindowDemo.java: This file contains a static main method that creates an
object of the GUI window class, thus displaying it.

The purpose of the SimpleWindowDemo.java file is simply to create an instance of the
SimpleWindow class. It is possible to eliminate the second file, SimpleWindowDemo.java, by
writing the static main method directly into the SimpleWindow.java file. The EmbeddedMain
class in Code Listing 23-4 shows an example.

Code Listing 23-3   (SimpleWindowDemo.java)

 1 /**
 2 This program creates an instance of the
 3 SimpleWindow class.
 4 */
 5
 6 public class SimpleWindowDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 SimpleWindow myWindow = new SimpleWindow();
11 }
12 }

M23_GADD7961_04_SE_C23.indd 9 2/12/18 3:28 PM

23-10	 Chapter 23    A First Look at GUI Applications with Swing

The EmbeddedMain class contains its own static main method (in lines 37 through 40), which
creates an instance of the class. Notice that the main method has exactly the same header as
any other static main method that we have written. We can compile the EmbeddedMain.java
file and then run the resulting .class file. When we do, we see the window shown in Figure 23-3.

Figure 23-3  Window displayed by the EmbeddedMain class  (Oracle Corporate Counsel)

12
13 /**
14 Constructor
15 */
16
17 public EmbeddedMain()
18 {
19 // Set this window's title.
20 setTitle("A Simple Window");
21
22 // Set the size of this window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify what happens when the close button is clicked.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Display the window.
29 setVisible(true);
30 }
31
32 /**
33 The main method creates an instance of the EmbeddedMain
34 class, which causes it to display its window.
35 */
36
37 public static void main(String[] args)
38 {
39 EmbeddedMain em = new EmbeddedMain();
40 }
41 }

M23_GADD7961_04_SE_C23.indd 10 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-11

Notice that in line 39 the main method declares a variable named em to reference the instance
of the class. Once the instance is created, however, the variable is not used again. Because we
do not need the variable, we can instantiate the class anonymously as shown here:

public static void main(String[] args)
{
 new EmbeddedMain();
}

In this version of the method, an instance of the EmbeddedMain class is created in memory,
but its address is not assigned to any reference variable.

Adding Components to a Window
Swing provides numerous GUI components that can be added to a window. Three funda-
mental components are the label, the text field, and the button. These are summarized in
Table 23-2.

Table 23-2  Label, text field, and button controls

Component Swing Class Description

Label JLabel An area that can display text

Text field JTextField An area in which the user may type a single line of
input from the keyboard

Button JButton A button that can cause an action to occur when it
is clicked

In Swing, labels are created with the JLabel class, text fields are created with the JTextField
class, and buttons are created with the JButton class. To demonstrate these components, we
will build a simple GUI application: The Kilometer Converter. This application will present
a window in which the user will be able to enter a distance in kilometers, and then click a
button to see that distance converted to miles. The conversion formula is as follows:

Miles = Kilometers * 0.6214

When designing a GUI application, it is usually helpful to draw a sketch showing the window
you are creating. Figure 23-4 shows a sketch of what the Kilometer Converter application’s
window will look like. As you can see from the sketch, the window will have a label, a text
field, and a button. When the user clicks the button, the distance in miles will be displayed
in a separate JOptionPane dialog box.

M23_GADD7961_04_SE_C23.indd 11 2/12/18 3:28 PM

23-12	 Chapter 23    A First Look at GUI Applications with Swing

Content Panes and Panels
Before we start writing code, you should be familiar with content panes and panels. A
content pane is a container that is part of every JFrame object. You cannot see the content
pane and it does not have a border, but any component that is to be displayed in a JFrame
must be added to its content pane.

A panel is also a container that can hold GUI components. Unlike JFrame objects, panels cannot
be displayed by themselves; however, they are commonly used to hold and organize collections
of related components. With Swing, you create panels with the JPanel class. In our Kilometer
Converter application, we will create a panel to hold the label, text field, and button. Then we
will add the panel to the JFrame object’s content pane. This is illustrated in Figure 23-5.

Figure 23-4  Sketch of the Kilometer Converter window  (Oracle Corporate Counsel)

Figure 23-5  A panel is added to the content pane  (Oracle Corporate Counsel)

Content Pane

Code Listing 23-5   (KiloConverter.java)

 1 import javax.swing.*;
 2
 3 /**
 4 The KiloConverter class displays a JFrame that
 5 lets the user enter a distance in kilometers. When

Code Listing 23-5 shows the initial code for the KiloConverter class. We will be adding to
this code as we develop the application. This version of the class is stored in the source code
folder Chapter 23\KiloConverter Phase 1.

M23_GADD7961_04_SE_C23.indd 12 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-13

 6 the Calculate button is clicked, a dialog box is
 7 displayed with the distance converted to miles.
 8 */
 9
10 public class KiloConverter extends JFrame
11 {
12 private JPanel panel; // To reference a panel
13 private JLabel messageLabel; // To reference a label
14 private JTextField kiloTextField; // To reference a text field
15 private JButton calcButton; // To reference a button
16 private final int WINDOW_WIDTH = 310; // Window width
17 private final int WINDOW_HEIGHT = 100;// Window height
18
19 /**
20 Constructor
21 */
22
23 public KiloConverter()
24 {
25 // Set the window title.
26 setTitle("Kilometer Converter");
27
28 // Set the size of the window.
29 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
30
31 // Specify what happens when the close button is clicked.
32 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
33
34 // Build the panel and add it to the frame.
35 buildPanel();
36
37 // Add the panel to the frame's content pane.
38 add(panel);
39
40 // Display the window.
41 setVisible(true);
42 }
43
44 /**
45 The buildPanel method adds a label, a text field,
46 and a button to a panel.
47 */
48
49 private void buildPanel()
50 {
51 // Create a label to display instructions.
52 messageLabel = new JLabel("Enter a distance " +
53 "in kilometers");

M23_GADD7961_04_SE_C23.indd 13 2/12/18 3:28 PM

23-14	 Chapter 23    A First Look at GUI Applications with Swing

Let’s take a closer look at this class. First, notice in line 10 that the KiloConverter class
extends the JFrame class as follows:

public class KiloConverter extends JFrame

Next, in lines 12 through 17, notice in the following that the class declares a number of fields,
and according to good class design principles, the fields are private:

private JPanel panel; // To reference a panel
private JLabel messageLabel; // To reference a label
private JTextField kiloTextField; // To reference a text field
private JButton calcButton; // To reference a button
private final int WINDOW_WIDTH = 310; // Window width
private final int WINDOW_HEIGHT = 100; // Window height

The statement in line 12 declares a JPanel reference variable named panel, which we will
use to reference the panel that will hold the other components. The messageLabel variable,
declared in line 13, will reference a JLabel object that displays a message instructing the
user to enter a distance in kilometers. The kiloTextField variable, declared in line 14, will
reference a JTextField object that will hold a value typed by the user. The calcButton

54
55 // Create a text field 10 characters wide.
56 kiloTextField = new JTextField(10);
57
58 // Create a button with the caption "Calculate".
59 calcButton = new JButton("Calculate");
60
61 // Create a JPanel object and let the panel
62 // field reference it.
63 panel = new JPanel();
64
65 // Add the label, text field, and button
66 // components to the panel.
67 panel.add(messageLabel);
68 panel.add(kiloTextField);
69 panel.add(calcButton);
70 }
71
72 /**
73 main method
74 */
75
76 public static void main(String[] args)
77 {
78 new KiloConverter();
79 }
80 }

M23_GADD7961_04_SE_C23.indd 14 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-15

variable, declared in line 15, will reference a JButton object that will calculate and display
the kilometers converted to miles when clicked. The WINDOW_WIDTH and WINDOW_HEIGHT
fields, declared in lines 16 and 17, are constants that hold the width and height of the
window.

Now let’s look at the constructor. In line 26 the setTitle method, which was inherited
from the JFrame class, is called to set the text for the window’s title bar. Next, in line 29,
the inherited setSize method is called to establish the size of the window. In line 32, the
inherited setDefaultCloseOperation method is called to establish the action that should
occur when the window’s close button is clicked.

Line 35 calls the buildPanel method. The buildPanel method is defined in this class, in
lines 49 through 70. The purpose of the buildPanel method is to create a label, a text field,
and a button, and then add those components to a panel. Let’s look at the method.

First, look at the method header in line 49 and notice that it is declared private. When
a method is private, only other methods in the same class can call it. This method is not
meant to be called by code outside the class, so it is declared private. In lines 52 and 53, the
method uses the following statement to create a JLabel object and assign its address to the
message field:

messageLabel = new JLabel("Enter a distance " +
 "in kilometers");

The string that is passed to the JLabel constructor is the text that will be displayed in the
label. The following statement appears in line 56. It creates a JTextField object, and assigns
its address to the kiloTextField field:

kiloTextField = new JTextField(10);

The argument that is passed to the JTextField constructor is the width of the text field in
columns. One column is enough space to hold the letter “m,” which is the widest letter in
the alphabet.

The following statement appears in line 59; it creates a JButton object, and assigns its
address to the calcButton field:

calcButton = new JButton("Calculate");

The string that is passed as an argument to the JButton constructor is the text that will be
displayed on the button.

Next, in line 63, the method uses the following statement to create a JPanel object and
assign its address to the panel field, which is a private field in the class:

panel = new JPanel();

A JPanel object is used to hold other components. You add a component to a JPanel object
with the add method. The following code, in lines 67 through 69, adds the objects referenced
by the messageLabel, kiloTextField, and calcButton variables to the JPanel object:

panel.add(messageLabel);
panel.add(kiloTextField);
panel.add(calcButton);

M23_GADD7961_04_SE_C23.indd 15 2/12/18 3:28 PM

23-16	 Chapter 23    A First Look at GUI Applications with Swing

At this point, the panel is fully constructed in memory. The buildPanel method ends, and
control returns to the class constructor. Here’s the next statement in the constructor, which
appears in line 38:

add(panel);

This statement calls the add method, which was inherited from the JFrame class. The pur-
pose of the add method is to add an object to the content pane. This statement adds the
object referenced by panel to the content pane.

The constructor’s last statement, in line 41, calls the inherited setVisible method to display
the window on the screen as follows:

setVisible(true);

The class has a static main method, which appears in lines 76 through 79. Line 78 creates
an instance of the KiloConverter class. When this program is executed, the window shown
in Figure 23-6 is displayed on the screen.

Figure 23-6  Kilometer Converter window  (Oracle Corporate Counsel)

Figure 23-7  Components in the Kilometer Converter window  (Oracle Corporate Counsel)

JLabel component JTextField component

JButton component

NOTE:  Recall that the size of the window in the KiloConverter class is set to 310
pixels wide by 100 pixels high. This is set with the WINDOW_WIDTH and WINDOW_HEIGHT
constants. Figures 23-6 and 23-7 show the window as it appears on a system set at a video
resolution of 1024 by 768 pixels. If your video resolution is lower, the window might not
appear exactly as shown in the figures. If this is the case, you can increase the values of
the WINDOW_WIDTH and WINDOW_HEIGHT constants and recompile the program. This is true
for other applications in this chapter as well.

Figure 23-7 shows the window again, this time pointing out each of the components.

Although you can type input into the text field, the application does nothing when you click
the Calculate button because we have not written an event handler that will execute when
the button is clicked. That’s the next step.

M23_GADD7961_04_SE_C23.indd 16 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-17

Handling Events with Action Listeners
An event is an action that takes place within a program, such as the clicking of a button.
When an event takes place, the component that is responsible for the event creates an event
object in memory. The event object contains information about the event. The component
that generated the event object is known as the event source. For example, when the user
clicks a button, the JButton component generates an event object. The JButton component
that generated the event object is the event source.

But what happens to the event object once it is generated by a source component? It is pos-
sible that the source component is connected to one or more event listeners. An event listener
is an object that responds to events. If the source component is connected to an event listener,
then the event object is automatically passed, as an argument, to a specific method in the
event listener. The method then performs any actions that it was programmed to perform in
response to the event. This process is sometimes referred to as event firing.

When you are writing a GUI application, it is your responsibility to write the classes for
the event listeners that your application needs. For example, if you write an application
with a JButton component, an event will be generated each time the user clicks the button.
Therefore, you should write an event listener class that can handle the event. In your applica-
tion you would create an instance of the event listener class and connect it to the JButton
component. Before looking at a specific example, we must discuss two important topics that
arise when writing event listeners: private inner classes and interfaces.

Writing Event Listener Classes as Private Inner Classes
Java allows you to write a class definition inside of another class definition. A class that
is defined inside of another class is known as an inner class. Figure 23-8 illustrates a class
definition inside of another class definition.

Handling Events
VideoNote

Figure 23-8  A class with an inner class

When an inner class is private, as shown in the figure, it is accessible only to code in the class
that contains it. For example, the Inner class shown in the figure would be accessible only
to methods that belong to the Outer class. Code outside the Outer class would not be able
to access the Inner class. A common technique for writing an event listener class is to write
it as a private inner class, inside the class that creates the GUI. Although this is not the only
way to write event listener classes, it is the approach we take in this book.

M23_GADD7961_04_SE_C23.indd 17 2/12/18 3:28 PM

23-18	 Chapter 23    A First Look at GUI Applications with Swing

Event Listeners Must Implement an Interface
There is a special requirement that all event listener classes must meet: They must implement
an interface.

We discussed interfaces in detail in Chapter 10, but in case you haven’t read that material,
you can think of an interface as something like a class, containing one or more method
headers. Interfaces do not have actual methods, however, only their headers. When you
write a class that implements an interface, you are agreeing that the class will have all of the
methods that are specified in the interface.

Java provides numerous interfaces that you can use with event listener classes. There are
several different types of events that can occur within a GUI application, and the specific
interface that you use depends on the type of event you want to handle. JButton components
generate action events, and an event listener class that can handle action events is also known
as an action listener class. When you write an action listener class for a JButton component,
it must implement an interface known as ActionListener. In case you are curious, this is
what the code for the ActionListener interface looks like:

public interface ActionListener
{
 public void actionPerformed(ActionEvent e);
}

As you can see, the ActionListener interface contains the header for only one method:
actionPerformed. Notice that the method has public access, is void, and has a parameter
of the ActionEvent type. When you write a class that implements this interface, it must
have a method named actionPerformed, with a header exactly like the one in the interface.

NOTE:  The ActionListener interface, as well as other event listener interfaces, is in the
java.awt.event package. We will use the following import statement in order to use those
interfaces:

import java.awt.event.*;

You use the implements key word in a class header to indicate that it implements an
interface. Here is an example of a class named MyButtonListener that implements the
ActionListener interface:

private class MyButtonListener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 Write code here to handle the event.
 }
}

Remember, when you write a class that implements an interface, you are “promising” that
the class will have the methods specified in the interface. Notice that this class lives up to
its promise. It has a method named actionPerformed, with a header that matches the
actionPerformed header in the ActionListener interface exactly.

M23_GADD7961_04_SE_C23.indd 18 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-19

Registering an Event Listener Object
Once you have written an event listener class, you can create an object of that class, and
then connect the object with a GUI component. The process of connecting an event listener
object to a GUI component is known as registering the event listener.

When a JButton component generates an event, it automatically executes the
actionPerformed method of the event listener object that is registered with it, passing the
event object as an argument. This is illustrated in Figure 23-9.

NOTE:  In your action listener class, the only part of the actionPerformed method
header that does not have to match that which is shown in the ActionListener interface
exactly is the name of the parameter variable. Instead of using the name e, you can use
any legal variable name that you wish.

Code Listing 23-6   (KiloConverter.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for ActionListener Interface
 3
 4 /**
 5 The KiloConverter class displays a JFrame that
 6 lets the user enter a distance in kilometers. When
 7 the Calculate button is clicked, a dialog box is
 8 displayed with the distance converted to miles.

Figure 23-9  A JButton component firing an action event  (Oracle Corporate Counsel)

Writing an Event Listener for the
KiloConverter Class
Now that we’ve gone over the basics of event listeners, let’s continue to develop the
KiloConverter class. Code Listing 23-6 shows the class with an action listener added to
it. This version of the class is stored in the source code folder Chapter 23\KiloConverter
Phase 2. The action listener is a private inner class named CalcButtonListener. The new
code is shown in bold.

M23_GADD7961_04_SE_C23.indd 19 2/12/18 3:28 PM

23-20	 Chapter 23    A First Look at GUI Applications with Swing

 9 */
 10
 11 public class KiloConverter extends JFrame
 12 {
 13 private JPanel panel; // To reference a panel
 14 private JLabel messageLabel; // To reference a label
 15 private JTextField kiloTextField; // To reference a text field
 16 private JButton calcButton; // To reference a button
 17 private final int WINDOW_WIDTH = 310; // Window width
 18 private final int WINDOW_HEIGHT = 100; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public KiloConverter()
 25 {
 26 // Set the window title.
 27 setTitle("Kilometer Converter");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify what happens when the close button is clicked.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Build the panel and add it to the frame.
 36 buildPanel();
 37
 38 // Add the panel to the frame's content pane.
 39 add(panel);
 40
 41 // Display the window.
 42 setVisible(true);
 43 }
 44
 45 /**
 46 The buildPanel method adds a label, a text field,
 47 and a button to a panel.
 48 */
 49
 50 private void buildPanel()
 51 {
 52 // Create a label to display instructions.
 53 messageLabel = new JLabel("Enter a distance " +
 54 "in kilometers");
 55
 56 // Create a text field 10 characters wide.

M23_GADD7961_04_SE_C23.indd 20 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-21

 57 kiloTextField = new JTextField(10);
 58
 59 // Create a button with the caption "Calculate".
 60 calcButton = new JButton("Calculate");
 61
 62 // Add an action listener to the button.
 63 calcButton.addActionListener(new CalcButtonListener());
 64
 65 // Create a JPanel object and let the panel
 66 // field reference it.
 67 panel = new JPanel();
 68
 69 // Add the label, text field, and button
 70 // components to the panel.
 71 panel.add(messageLabel);
 72 panel.add(kiloTextField);
 73 panel.add(calcButton);
 74 }
 75
 76 /**
 77 CalcButtonListener is an action listener class for
 78 the Calculate button.
 79 */
 80
 81 private class CalcButtonListener implements ActionListener
 82 {
 83 /**
 84 The actionPerformed method executes when the user
 85 clicks on the Calculate button.
 86 @param e The event object.
 87 */
 88
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 final double CONVERSION = 0.6214;
 92 String input; // To hold the user's input
 93 double miles; // The number of miles
 94
 95 // Get the text entered by the user into the
 96 // text field.
 97 input = kiloTextField.getText();
 98
 99 // Convert the input to miles.
100 miles = Double.parseDouble(input) * CONVERSION;
101
102 // Display the result.
103 JOptionPane.showMessageDialog(null, input +
104 " kilometers is " + miles + " miles.");

M23_GADD7961_04_SE_C23.indd 21 2/12/18 3:28 PM

23-22	 Chapter 23    A First Look at GUI Applications with Swing

First, notice that we’ve added the import java.awt.event.*; statement in line 2. This is
necessary for our program to use the ActionListener interface. Next, look at the follow-
ing code in line 81:

private class CalcButtonListener implements ActionListener

This is the header for an inner class that we will use to create event listener objects. The name
of this class is CalcButtonListener and it implements the ActionListener interface. We
could have named the class anything we wanted to, but because it will handle the JButton
component’s action events, it must implement the ActionListener interface. The class has
one method, actionPerformed, which is required by the ActionListener interface. The
header for the actionPerformed method appears in line 89 as follows:

public void actionPerformed(ActionEvent e)

This method will be executed when the user clicks the JButton component. It has one
parameter, e, which is an ActionEvent object. This parameter receives the event object that
is passed to the method when it is called. Although we do not actually use the e parameter
in this method, we still have to list it inside the method header’s parentheses because it is
required by the ActionListener interface.

The actionPerformed method declares a constant for the conversion factor in line 91, and
two local variables in lines 92 and 93: input, a reference to a String object; and miles, a
double. The following statement appears in line 97:

input = kiloTextField.getText();

All JTextField objects have a getText method that returns the text contained in the text
field. This will be any value entered into the text field by the user. The value is returned as
a string. So, this statement retrieves any value entered by the user into the text field and
assigns it to input.

The following statement appears in line 100:

miles = Double.parseDouble(input) * CONVERSION;

This statement converts the value in input to a double, and then multiplies it by the con-
stant CONVERSION, which is set to 0.6214. This will convert the number of kilometers entered
by the user to miles. The result is stored in the miles variable. The method’s last statement,

105 }
106 }
107
108 /**
109 main method
110 */
111
112 public static void main(String[] args)
113 {
114 new KiloConverter();
115 }
116 }

M23_GADD7961_04_SE_C23.indd 22 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-23

in lines 103 and 104, uses JOptionPane to display a dialog box showing the distance con-
verted to miles as follows:

JOptionPane.showMessageDialog(null, input +
 " kilometers is " + miles + " miles.");

Writing an action listener class is only part of the process of handling a JButton compo-
nent’s action events. We must also create an object from the class and then register the object
with the JButton component. When we register the action listener object with the JButton
component, we are creating a connection between the two objects.

JButton components have a method named addActionListener, which is used for register-
ing action event listeners. In line 63, which is in the buildPanel method, the following state-
ment creates a CalcButtonListener object and registers that object with the calcButton
object:

calcButton.addActionListener(new CalcButtonListener());

You pass the address of an action listener object as the argument to the addActionListener
method. This statement uses the expression new CalcButtonListener() to create an
instance of the CalcButtonListener class. The address of that instance is then passed
to the addActionListener method. Now, when the user clicks the Calculate button, the
CalcButtonListener object’s actionPerformed method will be executed.

TIP:  Instead of the one statement in line 63, we could have written the following two
statements:

CalcButtonListener listener = new CalcButtonListener();
calcButton.addActionListener(listener);

The first statement shown here declares a CalcButtonListener variable named
listener, creates a new CalcButtonListener object, and assigns the object’s address
to the listener variable. The second statement passes the address in listener to the
addActionListener method. These two statements accomplish the same thing as the one
statement in line 63, but they declare a variable, listener, that we will not use again in
the program. A better way is to use the one statement that appears in line 63 as follows:

calcButton.addActionListener(new CalcButtonListener());

Recall that the new key word creates an object and returns the object’s address. This
statement uses the new key word to create a CalcButtonListener object, and passes the
object’s address directly to the addActionListener method. Because we do not need to
refer to the object again in the program, we do not assign the object’s address to a variable.
It is known as an anonymous object.

When this program is executed, the first window shown in Figure 23-10 is displayed on
the screen. If the user enters 2 in the text field and clicks the Calculate button, the second
window shown in the figure (a dialog box) appears. To exit the application, the user clicks
the OK button on the dialog box, and then clicks the close button in the upper-right corner
of the main window.

M23_GADD7961_04_SE_C23.indd 23 2/12/18 3:28 PM

23-24	 Chapter 23    A First Look at GUI Applications with Swing

Background and Foreground Colors
Many of the Swing component classes have methods named setBackground and
setForeground. You call these methods to change a component’s color. The background
color is the color of the component itself, and the foreground color is the color of text that
might be displayed on the component.

The argument that you pass to the setBackground and setForeground methods is a color
code. Table 23-3 lists several predefined constants that you can use for colors. To use these
constants, you must have the import java.awt.*; statement in your code.

Figure 23-10  Windows displayed by the KiloConverter class  (Oracle Corporate Counsel)

This window appears first. The user enters 2 in the
text field and then clicks the Calculate button. This dialog box appears next.

Table 23-3  Color constants (Oracle Corporate Counsel)

Color.BLACK Color.BLUE

Color.CYAN Color.DARK_GRAY

Color.GRAY Color.GREEN

Color.LIGHT_GRAY Color.MAGENTA

Color.ORANGE Color.PINK

Color.RED Color.WHITE

Color.YELLOW

For example, the following code creates a button with the text “OK” displayed on it. The
setBackground and setForeground methods are called to make the button blue and the
text yellow.

JButton okButton = new JButton("OK");
okButton.setBackground(Color.BLUE);
okButton.setForeground(Color.YELLOW);

The ColorWindow class in Code Listing 23-7 displays a window with a label and three
buttons. When the user clicks a button, it changes the background color of the panel that
contains the components and the foreground color of the label.

M23_GADD7961_04_SE_C23.indd 24 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-25

Code Listing 23-7   (ColorWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for Color class
 3 import java.awt.event.*; // Needed for event listener interface
 4
 5 /**
 6 This class demonstrates how to set the background color of
 7 a panel and the foreground color of a label.
 8 */
 9
 10 public class ColorWindow extends JFrame
 11 {
 12 private JLabel messageLabel; // To display a message
 13 private JButton redButton; // Changes color to red
 14 private JButton blueButton; // Changes color to blue
 15 private JButton yellowButton; // Changes color to yellow
 16 private JPanel panel; // A panel to hold components
 17 private final int WINDOW_WIDTH = 200; // Window width
 18 private final int WINDOW_HEIGHT = 125; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public ColorWindow()
 25 {
 26 // Set the title bar text.
 27 setTitle("Colors");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify an action for the close button.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Create a label.
 36 messageLabel = new JLabel("Click a button to " +
 37 "select a color.");
 38
 39 // Create the three buttons.
 40 redButton = new JButton("Red");
 41 blueButton = new JButton("Blue");
 42 yellowButton = new JButton("Yellow");
 43
 44 // Register an event listener with all 3 buttons.

M23_GADD7961_04_SE_C23.indd 25 2/12/18 3:28 PM

23-26	 Chapter 23    A First Look at GUI Applications with Swing

 45 redButton.addActionListener(new RedButtonListener());
 46 blueButton.addActionListener(new BlueButtonListener());
 47 yellowButton.addActionListener(new YellowButtonListener());
 48
 49 // Create a panel and add the components to it.
 50 panel = new JPanel();
 51 panel.add(messageLabel);
 52 panel.add(redButton);
 53 panel.add(blueButton);
 54 panel.add(yellowButton);
 55
 56 // Add the panel to the content pane.
 57 add(panel);
 58
 59 // Display the window.
 60 setVisible(true);
 61 }
 62
 63 /**
 64 Private inner class that handles the event when
 65 the user clicks the Red button.
 66 */
 67
 68 private class RedButtonListener implements ActionListener
 69 {
 70 public void actionPerformed(ActionEvent e)
 71 {
 72 // Set the panel's background to red.
 73 panel.setBackground(Color.RED);
 74
 75 // Set the label's text to blue.
 76 messageLabel.setForeground(Color.BLUE);
 77 }
 78 }
 79
 80 /**
 81 Private inner class that handles the event when
 82 the user clicks the Blue button.
 83 */
 84
 85 private class BlueButtonListener implements ActionListener
 86 {
 87 public void actionPerformed(ActionEvent e)
 88 {
 89 // Set the panel's background to blue.
 90 panel.setBackground(Color.BLUE);

M23_GADD7961_04_SE_C23.indd 26 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-27

 91
 92 // Set the label's text to yellow.
 93 messageLabel.setForeground(Color.YELLOW);
 94 }
 95 }
 96
 97 /**
 98 Private inner class that handles the event when
 99 the user clicks the Yellow button.
100 */
101
102 private class YellowButtonListener implements ActionListener
103 {
104 public void actionPerformed(ActionEvent e)
105 {
106 // Set the panel's background to yellow.
107 panel.setBackground(Color.YELLOW);
108
109 // Set the label's text to black.
110 messageLabel.setForeground(Color.BLACK);
111 }
112 }
113
114 /**
115 main method
116 */
117
118 public static void main(String[] args)
119 {
120 new ColorWindow();
121 }
122 }

Notice that this class has three action listener classes, one for each button. The action listener
classes are RedButtonListener, BlueButtonListener, and YellowButtonListener. The
following statements, in lines 45 through 47, register instances of these classes with the
appropriate button components:

redButton.addActionListener(new RedButtonListener());
blueButton.addActionListener(new BlueButtonListener());
yellowButton.addActionListener(new YellowButtonListener());

When you run the program, the window shown in Figure 23-11 appears.

M23_GADD7961_04_SE_C23.indd 27 2/12/18 3:28 PM

23-28	 Chapter 23    A First Look at GUI Applications with Swing

Changing the Background Color of a JFrame Object’s Content Pane
Recall that a JFrame object has a content pane, which is a container for all the components
that are added to the JFrame. When you add a component to a JFrame object, you are actu-
ally adding it to the object’s content pane. In the example shown in this section, we added a
label and some buttons to a panel, and then added the panel to the JFrame object’s content
pane. When we changed the background color, we changed the background color of the
panel. In this example, the color of the content pane does not matter because it is completely
filled up by the panel. The color of the panel covers up the color of the content pane.

In some cases, where you have not filled up the JFrame object’s content pane with a panel,
you might want to change the background color of the content pane. If you wish to change
the background color of a JFrame object’s content pane, you must call the content pane’s
setBackground method, not the JFrame object’s setBackground method. For example,
in a class that extends the JFrame class, the following statement can be used to change the
content pane’s background to blue:

getContentPane().setBackground(Color.BLUE);

In this statement, the getContentPane method is called to get a reference to the JFrame
object’s content pane. This reference is then used to call the content pane’s setBackground
method. As a result, the content pane’s background color will change to blue.

The ActionEvent Object
The action listener’s actionPerformed method has a parameter variable named e that is
declared as follows:

ActionEvent e

ActionEvent is a class that is defined in the Java API. When an action event occurs, an
object of the ActionEvent class is created, the action listener’s actionPerformed method

Figure 23-11  The window produced by the ColorWindow class  (Oracle Corporate Counsel)

The window components first
appear in their default colors.

When the user clicks on the Red button, the
panel turns red and the label turns blue.

When the user clicks on the Blue button, the
panel turns blue and the label turns yellow.

When the user clicks on the Yellow button, the
panel turns yellow and the label turns black.

M23_GADD7961_04_SE_C23.indd 28 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-29

is called, and a reference to the ActionEvent object is passed into the e parameter variable.
So, when the actionPerformed method executes, the e parameter references the event object
that was generated in response to the event.

Earlier it was mentioned that the event object contains information about the event. If you
wish, you can retrieve certain information about the event by calling one of the event object’s
methods. Two of the ActionEvent methods are listed in Table 23-4.

Code Listing 23-8   (EventObjectWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for event listener interface
 3
 4 /**
 5 This class demonstrates how to retrieve the action command
 6 from an event object.
 7 */
 8
 9 public class EventObject extends JFrame
10 {
11 private JButton button1; // Button 1
12 private JButton button2; // Button 2
13 private JButton button3; // Button 3
14 private JPanel panel; // A panel to hold components
15 private final int WINDOW_WIDTH = 300; // Window width
16 private final int WINDOW_HEIGHT = 70; // Window height

Table 23-4  ActionEvent methods

Method Name Description

getActionCommand() Returns the action command for this event as a String

getSource() Returns a reference to the object that generated this event

The getActionCommand Method
The first method listed in Table 23-4, getActionCommand, returns the action command that
is associated with the event. When a JButton component generates an event, the action
command is the text that appears on the button. The getActionCommand returns this text
as a String. You can use the getActionCommand method to determine which button was
clicked when several buttons share the same action listener class.

To demonstrate, look at the EventObjectWindow class in Code Listing 23-8. It produces
a window with three buttons. The buttons have the text “Button 1”, “Button 2”, and
“Button 3”. The action listener class displays the contents of the event object’s action
command when any of these buttons are clicked.

M23_GADD7961_04_SE_C23.indd 29 2/12/18 3:28 PM

23-30	 Chapter 23    A First Look at GUI Applications with Swing

17
18 /**
19 Constructor
20 */
21
22 public EventObject()
23 {
24 // Set the title bar text.
25 setTitle("Event Object Demonstration");
26
27 // Set the size of the window.
28 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
29
30 // Specify what happens when the close button is clicked.
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
32
33 // Create the three buttons.
34 button1 = new JButton("Button 1");
35 button2 = new JButton("Button 2");
36 button3 = new JButton("Button 3");
37
38 // Register an event listener with all 3 buttons.
39 button1.addActionListener(new ButtonListener());
40 button2.addActionListener(new ButtonListener());
41 button3.addActionListener(new ButtonListener());
42
43 // Create a panel and add the buttons to it.
44 panel = new JPanel();
45 panel.add(button1);
46 panel.add(button2);
47 panel.add(button3);
48
49 // Add the panel to the content pane.
50 add(panel);
51
52 // Display the window.
53 setVisible(true);
54 }
55
56 /**
57 Private inner class that handles the event when
58 the user clicks a button.
59 */
60
61 private class ButtonListener implements ActionListener
62 {
63 public void actionPerformed(ActionEvent e)

M23_GADD7961_04_SE_C23.indd 30 2/12/18 3:28 PM

	 23.2  Creating Windows	 23-31

64 {
65 // Get the action command.
66 String actionCommand = e.getActionCommand();
67
68 // Determine which button was clicked and display
69 // a message.
70 if (actionCommand.equals("Button 1"))
71 {
72 JOptionPane.showMessageDialog(null, "You clicked " +
73 "the first button.");
74 }
75 else if (actionCommand.equals("Button 2"))
76 {
77 JOptionPane.showMessageDialog(null, "You clicked " +
78 "the second button.");
79 }
80 else if (actionCommand.equals("Button 3"))
81 {
82 JOptionPane.showMessageDialog(null, "You clicked " +
83 "the third button.");
84 }
85 }
86 }
87
88 /**
89 main method
90 */
91
92 public static void main(String[] args)
93 {
94 new EventObject();
95 }
96 }

Previously you saw the ColorWindow class, in Code Listing 23-7, which had three buttons
and three different action listener classes. The EventObjectWindow class also has three but-
tons, but only one action listener class. In lines 39 through 41, we create and register three
separate instances of the class with the three buttons as follows:

button1.addActionListener(new ButtonListener());
button2.addActionListener(new ButtonListener());
button3.addActionListener(new ButtonListener());

Figure 23-12 shows the output of the application when the user clicks Button 1, Button 2,
and Button 3.

M23_GADD7961_04_SE_C23.indd 31 2/12/18 3:28 PM

23-32	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-12  Output of EventObjectWindow class  (Oracle Corporate Counsel)

This window appears first.

1

The user clicks Button 1 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

2

The user clicks Button 2 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

3

The user clicks Button 3 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

4

TIP:  The text that is displayed on a button is the default action command. You can
change the action command by calling the JButton class’s setActionCommand method.
For example, assuming that myButton references a JButton component, the following
statement would change the component’s action command to “The button was clicked”:

myButton.setActionCommand("The button was clicked");

NOTE:  Changing a JButton component’s action command does not change the text that
is displayed on the button. For a demonstration of how to change the action command,
see the ActionCommand.java file in this chapter’s source code folder.

The getSource Method
The second ActionEvent method listed in Table 23-4, getSource, returns a reference to
the component that is the source of the event. As with the getActionCommand method, if
you have several buttons and use objects of the same action listener class to respond to their
events, you can use the getSource method to determine which button was clicked. For
example, the ButtonListener class’s actionPerformed method in Code Listing 23-8 could
have been written as follows, to achieve the same result:

public void actionPerformed(ActionEvent e)
{
 // Determine which button was clicked and display
 // a message.

M23_GADD7961_04_SE_C23.indd 32 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-33

 if (e.getSource() == button1)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the first button.");
 }
 else if (e.getSource() == button2)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the second button.");
 }
 else if (e.getSource() == button3)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the third button.");
 }
}

 Checkpoint
 www.myprogramminglab.com

23.1	 What is a frame? How do you create a frame with Swing?

23.2	 How do you set a frame’s size?

23.3	 How do you display a frame on the screen?

23.4	 What is a content pane?

23.5	 What is the difference between a frame and a panel?

23.6	 What is an event listener?

23.7	 If you are writing an event listener class for a JButton component, what interface
must the class implement? What method must the class have? When is this method
executed?

23.8	 How do you register an event listener with a JButton component?

23.9	 How do you change the background color of a component? How do you change
the color of text displayed by a label or a button?

See the EventObjectWindow2.java file in this chapter’s source code folder for a demon-
stration of this code.

Layout Managers

CONCEPT:	 A layout manager is an object that governs the positions and sizes of
components in a container. The layout manager automatically repositions
and, in some cases, resizes the components when the container is resized.

An important part of designing a GUI application is determining the layout of the components
that are displayed in the application’s windows. The term layout refers to the positioning and

23.3	

M23_GADD7961_04_SE_C23.indd 33 2/12/18 3:28 PM

23-34	 Chapter 23    A First Look at GUI Applications with Swing

sizing of components. In Java, you do not normally specify the exact location of a component
within a window. Instead, you let a layout manager control the positions of components for
you. A layout manager is an object that has its own rules about how components are to be
positioned and sized, and it makes adjustments when necessary. For example, when the user
resizes a window, the layout manager determines where the components should be moved to.

In order to use a layout manager with a group of components, you must place the compo-
nents in a container, and then create a layout manager object. The layout manager object and
the container work together. In this chapter we discuss the three layout managers described
in Table 23-5. To use any of these classes, your code should have the following import
statement: import java.awt.*;

Table 23-5  Layout managers

Layout Manager Description

FlowLayout Arranges components in rows; this is the default layout manager for
JPanel objects

BorderLayout Arranges components in five regions: north, south, east, west, and
center; this is the default layout manager for a JFrame object’s content
pane

GridLayout Arranges components in a grid with rows and columns

Adding a Layout Manager to a Container
You add a layout manager to a container, such as a content pane or a panel, by calling the
setLayout method and passing a reference to a layout manager object as the argument.
For example, the following code creates a JPanel object, then sets a BorderLayout object
as its layout manager:

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

Likewise, the following code might appear in the constructor of a class that extends the
JFrame class. It sets a FlowLayout object as the layout manager for the content pane:

setLayout(new FlowLayout());

Once you establish a layout manager for a container, the layout manager governs the posi-
tions and sizes of the components that are added to the container.

The FlowLayout Manager
The FlowLayout manager arranges components in rows. This is the default layout manager
for JPanel objects. Here are some rules that the FlowLayout manager follows:

•	 You can add multiple components to a container that uses a FlowLayout manager.
•	 When you add components to a container that uses a FlowLayout manager, the com-

ponents appear horizontally, from left to right, in the order that they were added to
the component.

•	 When there is no more room in a row but more components are added, the new com-
ponents “flow” to the next row.

M23_GADD7961_04_SE_C23.indd 34 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-35

For example, the FlowWindow class shown in Code Listing 23-9 extends JFrame. This class
creates a 200 pixel wide by 105 pixel high window. In the constructor, the setLayout
method is called to give the content pane a FlowLayout manager. Then, three buttons
are created and added to the content pane. The main method creates an instance of the
FlowWindow class, which displays the window.

Code Listing 23-9   (FlowWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for FlowLayout class
 3
 4 /**
 5 This class demonstrates how to use a FlowLayout manager
 6 with the content pane.
 7 */
 8
 9 public class FlowWindow extends JFrame
10 {
11 private final int WINDOW_WIDTH = 200; // Window width
12 private final int WINDOW_HEIGHT = 105; // Window height
13
14 /**
15 Constructor
16 */
17
18 public FlowWindow()
19 {
20 // Set the title bar text.
21 setTitle("Flow Layout");
22
23 // Set the size of the window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify an action for the close button.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Add a FlowLayout manager to the content pane.
30 setLayout(new FlowLayout());
31
32 // Create three buttons.
33 JButton button1 = new JButton("Button 1");
34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36
37 // Add the three buttons to the content pane.
38 add(button1);
39 add(button2);
40 add(button3);

M23_GADD7961_04_SE_C23.indd 35 2/12/18 3:28 PM

23-36	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-13  The window displayed by the FlowWindow class  (Oracle Corporate Counsel)

41
42 // Display the window.
43 setVisible(true);
44 }
45
46 /**
47 The main method creates an instance of the FlowWindow
48 class, causing it to display its window.
49 */
50
51 public static void main(String[] args)
52 {
53 new FlowWindow();
54 }
55 }

Figure 23-13 shows the window that is displayed by this class. Notice that the buttons
appear from left to right in the order they were added to the content pane. Because there is
only enough room for the first two buttons in the first row, the third button is positioned in
the second row. By default, the content of each row is centered and there is a five pixel gap
between the components.

If the user resizes the window, the layout manager repositions the components according to
its rules. Figure 23-14 shows the appearance of the window in three different sizes.

Figure 23-14  The arrangements of the buttons after resizing

Adjusting the FlowLayout Alignment
The FlowLayout manager allows you to align components in the center of each row or
along the left or right edge of each row. An overloaded constructor allows you to pass
one of the following constants as an argument to set an alignment: FlowLayout.CENTER,
FlowLayout.LEFT, or FlowLayout.RIGHT. Here is an example that sets left alignment:

setLayout(new FlowLayout(FlowLayout.LEFT));

M23_GADD7961_04_SE_C23.indd 36 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-37

Figure 23-15 shows examples of windows that use a FlowLayout manager with left, center,
and right alignment.

Adjusting the FlowLayout Component Gaps
By default, the FlowLayout manager inserts a gap of five pixels between components, both
horizontally and vertically. You can adjust this gap by passing values for the horizontal and
vertical gaps as arguments to an overloaded FlowLayout constructor. The constructor has
the following format:

FlowLayout(int alignment, int horizontalGap, int verticalGap)

You pass one of the alignment constants discussed in the previous section to the alignment
parameter. The horizontalGap parameter is the number of pixels to separate components
horizontally, and the verticalGap parameter is the number of pixels to separate compo-
nents vertically. Here is an example of the constructor call:

setLayout(new FlowLayout(FlowLayout.LEFT, 10, 7));

This statement causes components to be left aligned with a horizontal gap of 10 pixels and
a vertical gap of seven pixels.

Figure 23-15  Left, center, and right alignment  (Oracle Corporate Counsel)

Left Alignment

Right Alignment

Center Alignment

The BorderLayout Manager
The BorderLayout manager divides a container into five regions. The regions are known
as north, south, east, west, and center. The arrangement of these regions is shown in
Figure 23-16.

M23_GADD7961_04_SE_C23.indd 37 2/12/18 3:28 PM

23-38	 Chapter 23    A First Look at GUI Applications with Swing

When a component is placed into a container that is managed by a BorderLayout manager,
the component must be placed into one of these five regions. Only one component at a time
may be placed into a region. When adding a component to the container, you specify the
region by passing one of the following constants as a second argument to the container’s
add method: BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST,
BorderLayout.WEST, or BorderLayout.CENTER.

For example, look at the following code:

JPanel panel = new JPanel();
JButton button = new JButton("Click Me");
panel.setLayout(new BorderLayout());
panel.add(button, BorderLayout.NORTH);

The first statement creates a JPanel object, referenced by the panel variable. The second
statement creates a JButton object, referenced by the button variable. The third statement
sets the JPanel object’s layout manager to a BorderLayout object. The fourth statement
adds the JButton object to the JPanel object’s north region.

If you do not pass a second argument to the add method, the component will be added to
the center region. Here are some rules that the BorderLayout manager follows:

•	 Each region can hold only one component at a time.
•	 When a component is added to a region, the component is stretched so it fills up the

entire region.

Look at the BorderWindow class shown in Code Listing 23-10, which extends JFrame. This
class creates a 400 pixel wide by 300 pixel high window. In the constructor, the setLayout
method is called to give the content pane a BorderLayout manager. Then, five buttons are
created and each is added to a different region.

Figure 23-16  The regions of a BorderLayout manager  (Oracle Corporate Counsel)

Code Listing 23-10   (BorderWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for BorderLayout class

M23_GADD7961_04_SE_C23.indd 38 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-39

 3
 4 /**
 5 This class demonstrates the BorderLayout manager.
 6 */
 7
 8 public class BorderWindow extends JFrame
 9 {
10 private final int WINDOW_WIDTH = 400; // Window width
11 private final int WINDOW_HEIGHT = 300; // Window height
12
13 /**
14 Constructor
15 */
16
17 public BorderWindow()
18 {
19 // Set the title bar text.
20 setTitle("Border Layout");
21
22 // Set the size of the window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify an action for the close button.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Add a BorderLayout manager to the content pane.
29 setLayout(new BorderLayout());
30
31 // Create five buttons.
32 JButton button1 = new JButton("North Button");
33 JButton button2 = new JButton("South Button");
34 JButton button3 = new JButton("East Button");
35 JButton button4 = new JButton("West Button");
36 JButton button5 = new JButton("Center Button");
37
38 // Add the five buttons to the content pane.
39 add(button1, BorderLayout.NORTH);
40 add(button2, BorderLayout.SOUTH);
41 add(button3, BorderLayout.EAST);
42 add(button4, BorderLayout.WEST);
43 add(button5, BorderLayout.CENTER);
44
45 // Display the window.
46 setVisible(true);
47 }
48
49 /**

M23_GADD7961_04_SE_C23.indd 39 2/12/18 3:28 PM

23-40	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-17 shows the window that is displayed. Normally the size of a button is just large
enough to accommodate the text that is displayed on the button. Notice that the buttons
displayed in this window did not retain their normal size. Instead, they were stretched to fill
all of the space in their regions. If the user resizes the window, the sizes of the components
will be changed as well. This is shown in Figure 23-18.

NOTE:  A JFrame object’s content pane is automatically given a BorderLayout man-
ager. We have explicitly added it in Code Listing 23-10 so it is clear that we are using a
BorderLayout manager.

Figure 23-17  The window displayed by the BorderWindow class  (Oracle Corporate Counsel)

50 The main method creates an instance of the BorderWindow
51 class, causing it to display its window.
52 */
53
54 public static void main(String[] args)
55 {
56 new BorderWindow();
57 }
58 }

Here are the rules that govern how a BorderLayout manager resizes components:

•	 A component that is placed in the north or south regions may be resized horizontally
so it fills up the entire region.

•	 A component that is placed in the east or west regions may be resized vertically so it
fills up the entire region.

M23_GADD7961_04_SE_C23.indd 40 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-41

•	 A component that is placed in the center region may be resized both horizontally and
vertically so it fills up the entire region.

Figure 23-18  The window resized  (Oracle Corporate Counsel)

TIP:  You do not have to place a component in every region of a border layout. To achieve
the desired positioning, you might want to place components in only a few of the layout
regions. In Chapter 24, you will see examples of applications that do this.

By default there is no gap between the regions. You can use an overloaded version of the
BorderLayout constructor to specify horizontal and vertical gaps, however. Here is the
constructor’s format:

BorderLayout(int horizontalGap, int verticalGap)

The horizontalGap parameter is the number of pixels to separate the regions horizontally,
and the verticalGap parameter is the number of pixels to separate the regions vertically.
Here is an example of the constructor call:

setLayout(new BorderLayout(5, 10));

This statement causes the regions to appear with a horizontal gap of five pixels and a verti-
cal gap of 10 pixels.

Nesting Panels Inside a Container’s Regions
You might think that the BorderLayout manager is limiting because it allows only one
component per region, and the components that are placed in its regions are automatically
resized to fill up any extra space. These limitations are easy to overcome, however, by adding
components to panels and then nesting the panels inside the regions.

For example, suppose we wish to modify the BorderWindow class in Code Listing 23-10
so the buttons retain their original size. We can accomplish this by placing each button in a
separate JPanel object and then adding the JPanel objects to the content pane’s five regions.
This is illustrated in Figure 23-19. As a result, the BorderLayout manager resizes the JPanel
objects to fill up the space in the regions, not the buttons contained within the JPanel objects.

M23_GADD7961_04_SE_C23.indd 41 2/12/18 3:28 PM

23-42	 Chapter 23    A First Look at GUI Applications with Swing

The BorderPanelWindow class in Code Listing 23-11 demonstrates this technique. This
class also introduces a new way of sizing windows. Notice that the constructor does not
explicitly set the size of the window with the setSize method. Instead, it calls the pack
method just before calling the setVisible method. The pack method, which is inherited
from JFrame, automatically sizes the window to accommodate the components contained
within it. Figure 23-20 shows the window that the class displays.

Figure 23-19  Nesting JPanel objects inside each region

Code Listing 23-11   (BorderPanelWindow.java)

 1 import java.awt.*; // Needed for BorderLayout class
 2 import javax.swing.*; // Needed for Swing classes
 3
 4 /**
 5 This class demonstrates how JPanels can be nested
 6 inside each region of a content pane governed by
 7 a BorderLayout manager.
 8 */
 9
10 public class BorderPanelWindow extends JFrame
11 {
12 /**
13 Constructor
14 */
15
16 public BorderPanelWindow()
17 {
18 // Set the title bar text.
19 setTitle("Border Layout");
20
21 // Specify an action for the close button.
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23
24 // Add a BorderLayout manager to the content pane.

M23_GADD7961_04_SE_C23.indd 42 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-43

25 setLayout(new BorderLayout());
26
27 // Create five panels.
28 JPanel panel1 = new JPanel();
29 JPanel panel2 = new JPanel();
30 JPanel panel3 = new JPanel();
31 JPanel panel4 = new JPanel();
32 JPanel panel5 = new JPanel();
33
34 // Create five buttons.
35 JButton button1 = new JButton("North Button");
36 JButton button2 = new JButton("South Button");
37 JButton button3 = new JButton("East Button");
38 JButton button4 = new JButton("West Button");
39 JButton button5 = new JButton("Center Button");
40
41 // Add the buttons to the panels.
42 panel1.add(button1);
43 panel2.add(button2);
44 panel3.add(button3);
45 panel4.add(button4);
46 panel5.add(button5);
47
48 // Add the five panels to the content pane.
49 add(panel1, BorderLayout.NORTH);
50 add(panel2, BorderLayout.SOUTH);
51 add(panel3, BorderLayout.EAST);
52 add(panel4, BorderLayout.WEST);
53 add(panel5, BorderLayout.CENTER);
54
55 // Pack and display the window.
56 pack();
57 setVisible(true);
58 }
59
60 /**
61 The main method creates an instance of the
62 BorderPanelWindow class, causing it to display
63 its window.
64 */
65
66 public static void main(String[] args)
67 {
68 new BorderPanelWindow();
69 }
70 }

M23_GADD7961_04_SE_C23.indd 43 2/12/18 3:28 PM

23-44	 Chapter 23    A First Look at GUI Applications with Swing

NOTE:  There are multiple layout managers at work in the BorderPanelWindow class.
The content pane uses a BorderLayout manager, and each of the JPanel objects use a
FlowLayout manager.

Figure 23-21  The GridLayout manager divides a container into cells

Figure 23-20  Window displayed by the BorderPanelWindow class  (Oracle Corporate Counsel)

The GridLayout Manager
The GridLayout manager creates a grid with rows and columns, much like a spreadsheet. As
a result, the container that is managed by a GridLayout object is divided into equally sized
cells. Figure 23-21 illustrates a container with three rows and five columns. This means that
the container is divided into 15 cells.

Here are some rules that the GridLayout manager follows:

•	 Each cell can hold only one component.
•	 All of the cells are the same size. This is the size of the largest component placed within

the layout.
•	 A component that is placed in a cell is automatically resized to fill up any extra space.

M23_GADD7961_04_SE_C23.indd 44 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-45

You pass the number of rows and columns that a container should have as arguments to the
GridLayout constructor. Here is the general format of the constructor:

GridLayout(int rows, int columns)

Here is an example of the constructor call:

setLayout(new GridLayout(2, 3));

This statement gives the container two rows and three columns, for a total of six cells. You
can pass 0 as an argument for the rows or the columns, but not both. Passing 0 for both
arguments will cause an error.

When adding components to a container that is governed by the GridLayout manager, you
cannot specify a cell. Instead, the components are assigned to cells in the order they are
added. The first component added to the container is assigned to the first cell, which is in the
upper-left corner. As other components are added, they are assigned to the remaining cells
in the first row, from left to right. When the first row is filled up, components are assigned
to the cells in the second row, and so forth.

The GridWindow class shown in Code Listing 23-12 demonstrates. It creates a 400 pixel
wide by 200 pixel high window, governed by a GridLayout manager. The content pane is
divided into two rows and three columns, and a button is added to each cell. Figure 23-22
shows the window displayed by the class.

Code Listing 23-12   (GridWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for GridLayout class
 3
 4 /**
 5 This class demonstrates the GridLayout manager.
 6 */
 7
 8 public class GridWindow extends JFrame
 9 {
10 private final int WINDOW_WIDTH = 400; // Window width
11 private final int WINDOW_HEIGHT = 200; // Window height
12
13 /**
14 Constructor
15 */
16
17 public GridWindow()
18 {
19 // Set the title bar text.
20 setTitle("Grid Layout");
21

M23_GADD7961_04_SE_C23.indd 45 2/12/18 3:28 PM

23-46	 Chapter 23    A First Look at GUI Applications with Swing

22 // Set the size of the window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify an action for the close button.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Add a GridLayout manager to the content pane.
29 setLayout(new GridLayout(2, 3));
30
31 // Create six buttons.
32 JButton button1 = new JButton("Button 1");
33 JButton button2 = new JButton("Button 2");
34 JButton button3 = new JButton("Button 3");
35 JButton button4 = new JButton("Button 4");
36 JButton button5 = new JButton("Button 5");
37 JButton button6 = new JButton("Button 6");
38
39 // Add the six buttons to the content pane.
40 add(button1); // Goes into row 1, column 1
41 add(button2); // Goes into row 1, column 2
42 add(button3); // Goes into row 1, column 3
43 add(button4); // Goes into row 2, column 1
44 add(button5); // Goes into row 2, column 2
45 add(button6); // Goes into row 2, column 3
46
47 // Display the window.
48 setVisible(true);
49 }
50
51 /**
52 The main method creates an instance of the GridWindow
53 class, causing it to display its window.
54 */
55
56 public static void main(String[] args)
57 {
58 new GridWindow();
59 }
60 }

As previously mentioned, the GridLayout manager limits each cell to only one component
and resizes components to fill up all of the space in a cell. To get around these limitations
you can nest panels inside the cells and add other components to the panels. For example, the
GridPanelWindow class shown in Code Listing 23-13 is a modification of the GridWindow
class. It creates six panels and adds a button and a label to each panel. These panels are then
added to the content pane’s cells. Figure 23-23 shows the window displayed by this class.

M23_GADD7961_04_SE_C23.indd 46 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-47

Figure 23-22  Window displayed by the GridWindow class  (Oracle Corporate Counsel)

Code Listing 23-13   (GridPanelWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for GridLayout class
 3
 4 /**
 5 This class demonstrates how panels may be added to
 6 the cells created by a GridLayout manager.
 7 */
 8
 9 public class GridPanelWindow extends JFrame
10 {
11 private final int WINDOW_WIDTH = 400; // Window width
12 private final int WINDOW_HEIGHT = 200; // Window height
13
14 /**
15 Constructor
16 */
17
18 public GridPanelWindow()
19 {
20 // Set the title bar text.
21 setTitle("Grid Layout");
22
23 // Set the size of the window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify an action for the close button.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Add a GridLayout manager to the content pane.
30 setLayout(new GridLayout(2, 3));
31
32 // Create six buttons.
33 JButton button1 = new JButton("Button 1");

M23_GADD7961_04_SE_C23.indd 47 2/12/18 3:28 PM

23-48	 Chapter 23    A First Look at GUI Applications with Swing

34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36 JButton button4 = new JButton("Button 4");
37 JButton button5 = new JButton("Button 5");
38 JButton button6 = new JButton("Button 6");
39
40 // Create six labels.
41 JLabel label1 = new JLabel("This is cell 1.");
42 JLabel label2 = new JLabel("This is cell 2.");
43 JLabel label3 = new JLabel("This is cell 3.");
44 JLabel label4 = new JLabel("This is cell 4.");
45 JLabel label5 = new JLabel("This is cell 5.");
46 JLabel label6 = new JLabel("This is cell 6.");
47
48 // Create six panels.
49 JPanel panel1 = new JPanel();
50 JPanel panel2 = new JPanel();
51 JPanel panel3 = new JPanel();
52 JPanel panel4 = new JPanel();
53 JPanel panel5 = new JPanel();
54 JPanel panel6 = new JPanel();
55
56 // Add the labels to the panels.
57 panel1.add(label1);
58 panel2.add(label2);
59 panel3.add(label3);
60 panel4.add(label4);
61 panel5.add(label5);
62 panel6.add(label6);
63
64 // Add the buttons to the panels.
65 panel1.add(button1);
66 panel2.add(button2);
67 panel3.add(button3);
68 panel4.add(button4);
69 panel5.add(button5);
70 panel6.add(button6);
71
72 // Add the panels to the content pane.
73 add(panel1); // Goes into row 1, column 1
74 add(panel2); // Goes into row 1, column 2
75 add(panel3); // Goes into row 1, column 3
76 add(panel4); // Goes into row 2, column 1
77 add(panel5); // Goes into row 2, column 2
78 add(panel6); // Goes into row 2, column 3
79
80 // Display the window.
81 setVisible(true);

M23_GADD7961_04_SE_C23.indd 48 2/12/18 3:28 PM

	 23.3  Layout Managers	 23-49

Figure 23-23  Window displayed by the GridPanelWindow class  (Oracle Corporate Counsel)

Because we have containers nested inside the content pane, there are multiple layout manag-
ers at work in the GridPanelWindow class. The content pane uses a GridLayout manager,
and each of the JPanel objects uses a FlowLayout manager.

 Checkpoint
 www.myprogramminglab.com

23.10	 How do you add a layout manager to a container?

23.11	 Which layout manager divides a container into regions known as north, south,
east, west, and center?

23.12	 Which layout manager arranges components in a row, from left to right, in the
order they were added to the container?

23.13	 Which layout manager arranges components in rows and columns?

23.14	 How many components can you have at one time in a BorderLayout region? In a
GridLayout cell?

23.15	 How do you prevent the BorderLayout manager from resizing a component that
has been placed in its region?

23.16	 How can you cause a content pane to be automatically sized to accommodate the
components contained within it?

23.17	 What is the default layout manager for a JFrame object’s content pane? For a
JPanel object?

82 }
83
84 /**
85 The main method creates an instance of the
86 GridPanelWindow class, displaying its window.
87 */
88
89 public static void main(String[] args)
90 {
91 new GridPanelWindow();
92 }
93 }

M23_GADD7961_04_SE_C23.indd 49 2/12/18 3:28 PM

23-50	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-24  Radio buttons  (Oracle Corporate Counsel)

Radio Buttons and Check Boxes

CONCEPT:	 Radio buttons normally appear in groups of two or more and allow the user
to select one of several possible options. Check boxes, which may appear
alone or in groups, allow the user to make yes/no or on/off selections.

Radio Buttons
Radio buttons are useful when you want the user to select one choice from several possible
options. Figure 23-24 shows a group of radio buttons.

23.4	

A radio button may be selected or deselected. Each radio button has a small circle that
appears filled in when the radio button is selected and appears empty when the radio button
is deselected. You use the JRadioButton class to create radio buttons. Here are the general
formats of two JRadioButton constructors:

JRadioButton(String text)
JRadioButton(String text, boolean selected)

The first constructor shown creates a deselected radio button. The argument passed to the
text parameter is the string that is displayed next to the radio button. For example, the fol-
lowing statement creates a radio button with the text “Choice 1” displayed next to it. The
radio button initially appears deselected.

JRadioButton radio1 = new JRadioButton("Choice 1");

The second constructor takes an additional boolean argument, which is passed to the
selected parameter. If true is passed as the selected argument, the radio button ini-
tially appears selected. If false is passed, the radio button initially appears deselected. For
example, the following statement creates a radio button with the text “Choice 1” displayed
next to it. The radio button initially appears selected.

JRadioButton radio1 = new JRadioButton("Choice 1", true);

Radio buttons are normally grouped together. When a set of radio buttons are grouped
together, only one of the radio buttons in the group may be selected at any time. Clicking a
radio button selects it and automatically deselects any other radio button in the same group.
Because only one radio button in a group can be selected at any given time, the buttons are
said to be mutually exclusive.

M23_GADD7961_04_SE_C23.indd 50 2/12/18 3:28 PM

	 23.4  Radio Buttons and Check Boxes	 23-51

Grouping with the ButtonGroup class
Once you have created the JRadioButton objects that you wish to appear in a group, you
must create an instance of the ButtonGroup class, and then add the JRadioButton objects
to it. The ButtonGroup object creates the mutually exclusive relationship among the radio
buttons that it contains. The following code shows an example:

// Create three radio buttons.
JRadioButton radio1 = new JRadioButton("Choice 1", true);
JRadioButton radio2 = new JRadioButton("Choice 2");
JRadioButton radio3 = new JRadioButton("Choice 3");

// Create a ButtonGroup object.
ButtonGroup group = new ButtonGroup();

// Add the radio buttons to the ButtonGroup object.
group.add(radio1);
group.add(radio2);
group.add(radio3);

Although you add radio buttons to a ButtonGroup object, ButtonGroup objects are not
containers like JPanel objects, or content frames. The function of a ButtonGroup object is
to deselect all the other radio buttons when one of them is selected. If you wish to add the
radio buttons to a panel or a content frame, you must add them individually, as shown here:

// Add the radio buttons to the JPanel referenced by panel.
panel.add(radio1);
panel.add(radio2);
panel.add(radio3);

Responding to Radio Button Events
Just like JButton objects, JRadioButton objects generate an action event when they are
clicked. To respond to a radio button action event, you must write an action listener class
and then register an instance of that class with the JRadioButton object. To demonstrate,
we will look at the MetricConverter class, which is similar to the KiloConverter class
shown earlier. The MetricConverter class presents a window in which the user can enter a
distance in kilometers, and then click radio buttons to see that distance converted to miles,
feet, or inches. The conversion formulas are as follows:

Miles = Kilometers * 0.6214
Feet = Kilometers * 3281.0
Inches = Kilometers * 39370.0

NOTE:  The name “radio button” refers to the old car radios that had push buttons for
selecting stations. Only one of the buttons could be pushed in at a time. When you pushed
a button in, it automatically popped out any other button that was pushed in.

M23_GADD7961_04_SE_C23.indd 51 2/12/18 3:28 PM

23-52	 Chapter 23    A First Look at GUI Applications with Swing

Figure 23-25 shows a sketch of what the window will look like. As you can see from the
sketch, the window will have a label, a text field, and three radio buttons. When the user
clicks on one of the radio buttons, the distance will be converted to the selected units and
displayed in a separate JOptionPane dialog box.

Figure 23-25  Metric Converter window (Oracle Corporate Counsel)

Code Listing 23-14   (MetricConverter.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 The MetricConverter class lets the user enter a
 7 distance in kilometers. Radio buttons can be selected to
 8 convert the kilometers to miles, feet, or inches.
 9 */
 10
 11 public class MetricConverter extends JFrame
 12 {
 13 private JPanel panel; // A holding panel
 14 private JLabel messageLabel; // A message to the user
 15 private JTextField kiloTextField; // To hold user input
 16 private JRadioButton milesButton; // To convert to miles
 17 private JRadioButton feetButton; // To convert to feet
 18 private JRadioButton inchesButton; // To convert to inches
 19 private ButtonGroup radioButtonGroup; // To group radio buttons
 20 private final int WINDOW_WIDTH = 400; // Window width
 21 private final int WINDOW_HEIGHT = 100; // Window height
 22
 23 /**
 24 Constructor
 25 */
 26
 27 public MetricConverter()
 28 {

The MetricConverter class is shown in Code Listing 23-14. The class initially displays the
window shown at the top of Figure 23-26. The figure also shows the dialog boxes that are
displayed when the user clicks any of the radio buttons.

M23_GADD7961_04_SE_C23.indd 52 2/12/18 3:28 PM

	 23.4  Radio Buttons and Check Boxes	 23-53

 29 // Set the title.
 30 setTitle("Metric Converter");
 31
 32 // Set the size of the window.
 33 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 34
 35 // Specify an action for the close button.
 36 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 37
 38 // Build the panel and add it to the frame.
 39 buildPanel();
 40
 41 // Add the panel to the frame's content pane.
 42 add(panel);
 43
 44 // Display the window.
 45 setVisible(true);
 46 }
 47
 48 /**
 49 The buildPanel method adds a label, text field, and
 50 and three buttons to a panel.
 51 */
 52
 53 private void buildPanel()
 54 {
 55 // Create the label, text field, and radio buttons.
 56 messageLabel = new JLabel("Enter a distance in kilometers");
 57 kiloTextField = new JTextField(10);
 58 milesButton = new JRadioButton("Convert to miles");
 59 feetButton = new JRadioButton("Convert to feet");
 60 inchesButton = new JRadioButton("Convert to inches");
 61
 62 // Group the radio buttons.
 63 radioButtonGroup = new ButtonGroup();
 64 radioButtonGroup.add(milesButton);
 65 radioButtonGroup.add(feetButton);
 66 radioButtonGroup.add(inchesButton);
 67
 68 // Add action listeners to the radio buttons.
 69 milesButton.addActionListener(new RadioButtonListener());
 70 feetButton.addActionListener(new RadioButtonListener());
 71 inchesButton.addActionListener(new RadioButtonListener());
 72
 73 // Create a panel and add the components to it.
 74 panel = new JPanel();
 75 panel.add(messageLabel);
 76 panel.add(kiloTextField);

M23_GADD7961_04_SE_C23.indd 53 2/12/18 3:28 PM

23-54	 Chapter 23    A First Look at GUI Applications with Swing

 77 panel.add(milesButton);
 78 panel.add(feetButton);
 79 panel.add(inchesButton);
 80 }
 81
 82 /**
 83 Private inner class that handles the event when
 84 the user clicks one of the radio buttons.
 85 */
 86
 87 private class RadioButtonListener implements ActionListener
 88 {
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 String input; // To hold the user's input
 92 String convertTo = ""; // The units we're converting to
 93 double result = 0.0; // To hold the conversion
 94
 95 // Get the kilometers entered.
 96 input = kiloTextField.getText();
 97
 98 // Determine which radio button was clicked.
 99 if (e.getSource() == milesButton)
100 {
101 // Convert to miles.
102 convertTo = " miles.";
103 result = Double.parseDouble(input) * 0.6214;
104 }
105 else if (e.getSource() == feetButton)
106 {
107 // Convert to feet.
108 convertTo = " feet.";
109 result = Double.parseDouble(input) * 3281.0;
110 }
111 else if (e.getSource() == inchesButton)
112 {
113 // Convert to inches.
114 convertTo = " inches.";
115 result = Double.parseDouble(input) * 39370.0;
116 }
117
118 // Display the conversion.
119 JOptionPane.showMessageDialog(null, input +
120 " kilometers is " + result + convertTo);
121 }
122 }

M23_GADD7961_04_SE_C23.indd 54 2/12/18 3:28 PM

	 23.4  Radio Buttons and Check Boxes	 23-55

123
124 /**
125 The main method creates an instance of the
126 MetricConverter class, displaying its window.
127 */
128
129 public static void main(String[] args)
130 {
131 new MetricConverter();
132 }
133 }

Figure 23-26  Window and dialog boxes displayed by the MetricConverter
class  (Oracle Corporate Counsel)

This window appears first. The user enters 2 into the text field.

This dialog box appears when the user clicks
the "Convert to miles" radio button.

This dialog box appears when the user clicks
the "Convert to feet" radio button.

This dialog box appears when the user
clicks the "Convert to inches" radio button.

Determining in Code Whether a Radio Button Is Selected
In many applications you will merely want to know whether a radio button is selected. The
JRadioButton class’s isSelected method returns a boolean value indicating whether the
radio button is selected. If the radio button is selected, the method returns true. Otherwise,
it returns false. In the following code, the radio variable references a radio button. The if
statement calls the isSelected method to determine whether the radio button is selected.

M23_GADD7961_04_SE_C23.indd 55 2/12/18 3:28 PM

23-56	 Chapter 23    A First Look at GUI Applications with Swing

if (radio.isSelected())
{
 // Code here executes if the radio
 // button is selected.
}

Selecting a Radio Button in Code
It is also possible to select a radio button in code with the JRadioButton class’s doClick
method. When the method is called, the radio button is selected just as if the user had
clicked on it. As a result, an action event is generated. In the following statement, the
radio variable references a radio button. When this statement executes, the radio button
will be selected.

radio.doClick();

Check Boxes
A check box appears as a small box with a label appearing next to it. The window shown
in Figure 23-27 has three check boxes.

Figure 23-27  Check boxes  (Oracle Corporate Counsel)

Like radio buttons, check boxes may be selected or deselected at run time. When a check
box is selected, a small check mark appears inside the box. Although check boxes are often
displayed in groups, they are not usually grouped in a ButtonGroup like radio buttons. This
is because check boxes are not normally used to make mutually exclusive selections. Instead,
the user is allowed to select any or all of the check boxes that are displayed in a group.

You create a check box with the JCheckBox class. Here are the general formats of two
JCheckBox constructors:

JCheckBox(String text)
JCheckBox(String text, boolean selected)

The first constructor shown creates a deselected check box. The argument passed to the text
parameter is the string that is displayed next to the check box. For example, the following
statement creates a check box with the text “Macaroni” displayed next to it. The check box
initially appears deselected.

JCheckBox check1 = new JCheckBox("Macaroni");

M23_GADD7961_04_SE_C23.indd 56 2/12/18 3:28 PM

	 23.4  Radio Buttons and Check Boxes	 23-57

The second constructor takes an additional boolean argument, which is passed to the
selected parameter. If true is passed as the selected argument, the radio check box
initially appears selected. If false is passed, the check box initially appears deselected. For
example, the following statement creates a check box with the text “Macaroni” displayed
next to it. The radio check box initially appears selected.

JCheckBox check1 = new JCheckBox("Macaroni", true);

Responding to Check Box Events
When a JCheckBox object is selected or deselected, it generates an item event. You handle
item events in a manner similar to the way you handle the action events that are generated
by JButton and JRadioButton objects. First, you write an item listener class, which must
meet the following requirements:

•	 It must implement the ItemListener interface.
•	 It must have a method named itemStateChanged with the following header:

public void itemStateChanged(ItemEvent e)

NOTE:  When implementing the ItemListener interface, your code must have the
following import statement: import java.awt.event.*;

Once you have written an item listener class, you create an object of that class, and then
register the item listener object with the JCheckBox component. When a JCheckBox com-
ponent generates an event, it automatically executes the itemStateChanged method of the
item listener object that is registered to it, passing the event object as an argument.

Determining in Code Whether a Check Box Is Selected
As with JRadioButton, you use the isSelected method to determine whether a JCheckBox
component is selected. The method returns a boolean value. If the check box is selected,
the method returns true. Otherwise, it returns false. In the following code, the checkBox
variable references a JCheckBox component. The if statement calls the isSelected method
to determine whether the check box is selected.

if (checkBox.isSelected())
{
 // Code here executes if the check
 // box is selected.
}

The ColorCheckBoxWindow class, shown in Code Listing 23-15, demonstrates how check
boxes are used. It displays the window shown in Figure 23-28. When the “Yellow back-
ground” check box is selected, the background color of the content pane, the label, and
the check boxes turns yellow. When this check box is deselected, the background colors go
back to light gray. When the “Red foreground” check box is selected, the color of the text
displayed in the label and the check boxes turns red. When this check box is deselected, the
foreground colors go back to black.

M23_GADD7961_04_SE_C23.indd 57 2/12/18 3:28 PM

23-58	 Chapter 23    A First Look at GUI Applications with Swing

Code Listing 23-15   (ColorCheckBoxWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The ColorCheckBoxWindow class demonstrates how check boxes
 7 can be used.
 8 */
 9
 10 public class ColorCheckBoxWindow extends JFrame
 11 {
 12 private JLabel messageLabel; // A message to the user
 13 private JCheckBox yellowCheckBox; // To select yellow background
 14 private JCheckBox redCheckBox; // To select red foreground
 15 private final int WINDOW_WIDTH = 300; // Window width
 16 private final int WINDOW_HEIGHT = 100; // Window height
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public ColorCheckBoxWindow()
 23 {
 24 // Set the text for the title bar.
 25 setTitle("Color Check Boxes");
 26
 27 // Set the size of the window.
 28 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create a label.
 34 messageLabel = new JLabel("Select the check " +
 35 "boxes to change colors.");
 36
 37 // Create the check boxes.
 38 yellowCheckBox = new JCheckBox("Yellow background");
 39 redCheckBox = new JCheckBox("Red foreground");
 40
 41 // Add an item listener to the check boxes.
 42 yellowCheckBox.addItemListener(new CheckBoxListener());
 43 redCheckBox.addItemListener(new CheckBoxListener());
 44
 45 // Add a FlowLayout manager to the content pane.
 46 setLayout(new FlowLayout());

M23_GADD7961_04_SE_C23.indd 58 2/12/18 3:28 PM

	 23.4  Radio Buttons and Check Boxes	 23-59

 47
 48 // Add the label and check boxes to the content pane.
 49 add(messageLabel);
 50 add(yellowCheckBox);
 51 add(redCheckBox);
 52
 53 // Display the window.
 54 setVisible(true);
 55 }
 56
 57 /**
 58 Private inner class that handles the event when
 59 the user clicks one of the check boxes.
 60 */
 61
 62 private class CheckBoxListener implements ItemListener
 63 {
 64 public void itemStateChanged(ItemEvent e)
 65 {
 66 // Determine which check box was clicked.
 67 if (e.getSource() == yellowCheckBox)
 68 {
 69 // Is the yellow check box selected? If so, we
 70 // want to set the background color to yellow.
 71 if (yellowCheckBox.isSelected())
 72 {
 73 // The yellow check box was selected. Set
 74 // the background color for the content
 75 // pane and the two check boxes to yellow.
 76 getContentPane().setBackground(Color.YELLOW);
 77 yellowCheckBox.setBackground(Color.YELLOW);
 78 redCheckBox.setBackground(Color.YELLOW);
 79 }
 80 else
 81 {
 82 // The yellow check box was deselected. Set
 83 // the background color for the content
 84 // pane and the two check boxes to light gray.
 85 getContentPane().setBackground(Color.LIGHT_GRAY);
 86 yellowCheckBox.setBackground(Color.LIGHT_GRAY);
 87 redCheckBox.setBackground(Color.LIGHT_GRAY);
 88 }
 89 }
 90 else if (e.getSource() == redCheckBox)
 91 {
 92 // Is the red check box selected? If so, we want
 93 // to set the foreground color to red.
 94 if (redCheckBox.isSelected())

M23_GADD7961_04_SE_C23.indd 59 2/12/18 3:28 PM

23-60	 Chapter 23    A First Look at GUI Applications with Swing

 95 {
 96 // The red check box was selected. Set the
 97 // foreground color for the label and the
 98 // two check boxes to red.
 99 messageLabel.setForeground(Color.RED);
100 yellowCheckBox.setForeground(Color.RED);
101 redCheckBox.setForeground(Color.RED);
102 }
103 else
104 {
105 // The red check box was deselected. Set the
106 // foreground color for the label and the
107 // two check boxes to black.
108 messageLabel.setForeground(Color.BLACK);
109 yellowCheckBox.setForeground(Color.BLACK);
110 redCheckBox.setForeground(Color.BLACK);
111 }
112 }
113 }
114 }
115
116 /**
117 The main method creates an instance of the
118 ColorCheckBoxWindow class, displaying its window.
119 */
120
121 public static void main(String[] args)
122 {
123 new ColorCheckBoxWindow();
124 }
125 }

Figure 23-28  Window displayed by the ColorCheckBoxWindow class  (Oracle Corporate Counsel)

Selecting a Check Box in Code
As with radio buttons, it is possible to select check boxes in code with the JCheckBox class’s
doClick method. When the method is called, the radio check box is selected just as if the
user had clicked on it. As a result, an item event is generated. In the following statement, the

M23_GADD7961_04_SE_C23.indd 60 2/12/18 3:28 PM

	 23.5  Borders	 23-61

checkBox variable references a JCheckBox object. When this statement executes, the check
box will be selected.

checkBox.doClick();

Figure 23-29  A group of check boxes with a titled border

 Checkpoint
  www.myprogramminglab.com

23.18	 You want the user to be able to select only one item from a group of items. Which
type of component would you use for the items, radio buttons or check boxes?

23.19	 You want the user to be able to select any number of items from a group of items.
Which type of component would you use for the items, radio buttons or check
boxes?

23.20	 What is the purpose of a ButtonGroup object?

23.21	 Do you normally add radio buttons, check boxes, or both to a ButtonGroup
object?

23.22	 What type of event does a radio button generate when the user clicks on it?

23.23	 What type of event does a check box generate when the user clicks on it?

23.24	 How do you determine in code whether a radio button is selected?

23.25	 How do you determine in code whether a check box is selected?

Borders

CONCEPT:	 A component can appear with several different styles of borders
around it. A Border object specifies the details of a border. You use the
BorderFactory class to create Border objects.

Sometimes it is helpful to place a border around a component or a group of components
on a panel. You can give windows a more organized look by grouping related components
inside borders. For example, Figure 23-29 shows a group of check boxes that are enclosed
in a border. In addition, notice that the border has a title.

23.5	

JPanel components have a method named setBorder, which is used to add a border to the
panel. The setBorder method accepts a Border object as its argument. A Border object
contains detailed information describing the appearance of a border.

Rather than creating Border objects yourself, you should use the BorderFactory class to
create them for you. The BorderFactory class has methods that return various types of

M23_GADD7961_04_SE_C23.indd 61 2/12/18 3:28 PM

23-62	 Chapter 23    A First Look at GUI Applications with Swing

borders. Table 23-6 describes borders that can be created with the BorderFactory class.
The table also lists the BorderFactory methods that can be called to create the borders.
Note that there are several overloaded versions of each method.

NOTE:  If you use the BorderFactory class in your code, you should have the following
import statement: import javax.swing.*;

Table 23-6  Borders produced by the BorderFactory class

Border BorderFactory Method Description

Compound
border

createCompoundBorder A border that has two parts: an inside edge
and an outside edge. The inside and outside
edges can be any of the other borders.

Empty border createEmptyBorder A border that contains only empty space.

Etched border createEtchedBorder A border with a 3-D appearance that looks
“etched” into the background.

Line border createLineBorder A border that appears as a line.

Lowered bevel
border

createLoweredBevelBorder A border that looks like beveled edges. It
has a 3-D appearance that gives the illu-
sion of being sunken into the surrounding
background.

Matte border createMatteBorder A line border that can have edges of differ-
ent thicknesses.

Raised bevel
border

createRaisedBevelBorder A border that looks like beveled edges. It
has a 3-D appearance that gives the illu-
sion of being raised above the surrounding
background.

Titled border createTitledBorder An etched border with a title.

In this chapter, we will concentrate on empty borders, line borders, and titled borders.

Empty Borders
An empty border is simply empty space around the edges of a component. To create an empty
border, call the BorderFactory class’s createEmtpyBorder method. Here is the method’s
general format:

BorderFactory.createEmptyBorder(int top, int left,
 int bottom, int right);

The arguments passed into top, left, bottom, and right specify in pixels the size of the
border’s top, left, bottom, and right edges. The method returns a reference to a Border
object. The following is an example of a statement that uses the method. Assume that the
panel variable references a JPanel object.

panel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));

M23_GADD7961_04_SE_C23.indd 62 2/12/18 3:28 PM

	 23.5  Borders	 23-63

After this statement executes, the JPanel referenced by panel will have an empty border of
five pixels around each edge.

NOTE:  In case you’ve skipped ahead to this chapter, the BorderFactory methods are
static, which means that you call them without creating an instance of the BorderFactory
class. (You simply write BorderFactory. before the method name to call the method.) This
is similar to the way the Math class and wrapper class methods we have discussed are
called. Static methods are covered in Chapter 8.

Line Borders
A line border is a line of a specified color and thickness that appears around the edges of
a component. To create a line border, call the BorderFactory class’s createLineBorder
method. Here is the method’s general format:

BorderFactory.createLineBorder(Color color, int thickness);

The arguments passed into color and thickness specify the color of the line and the size
of the line in pixels. The method returns a reference to a Border object. The following is an
example of a statement that uses the method. Assume that the panel variable references a
JPanel object.

panel.setBorder(BorderFactory.createLineBorder(Color.RED, 1));

After this statement executes, the JPanel referenced by panel will have a red line border
that is one pixel thick around its edges.

Titled Borders
A titled border is an etched border with a title displayed on it. To create a titled border, call
the BorderFactory class’s createTitledBorder method. Here is the method’s general
format:

BorderFactory.createTitledBorder(String title);

The argument passed into title is the text that is to be displayed as the border’s title. The
method returns a reference to a Border object. The following is an example of a statement
that uses the method. Assume that the panel variable references a JPanel object.

panel.setBorder(BorderFactory.createTitledBorder("Choices"));

After this statement executes, the JPanel referenced by panel will have an etched border
with the title “Choices” displayed on it.

 Checkpoint
  www.myprogramminglab.com

23.26	 What method do you use to set a border around a component?

23.27	 What is the preferred way of creating a Border object?

M23_GADD7961_04_SE_C23.indd 63 2/12/18 3:28 PM

23-64	 Chapter 23    A First Look at GUI Applications with Swing

Focus on Problem Solving: Extending
Classes from JPanel

CONCEPT:	 By writing a class that is extended from the JPanel class, you can create
a custom panel component that can hold other components and their
related code.

In the applications that you have studied so far in this chapter, we have used the
extends JFrame clause in the class header to extend the class from the JFrame class.
Recall that the extended class is then a specialized version of the JFrame class, and we use
its constructor to create the panels, buttons, and all of the other components needed. This
approach works well for simple applications. But for applications that use many components,
this approach can be cumbersome. Bundling all of the code and event listeners for a large
number of components into a single class can lead to a large and complex class. A better
approach is to encapsulate smaller groups of related components and their event listeners
into their own classes.

A commonly used technique is to extend a class from the JPanel class. This allows you to
create your own specialized panel component, which can contain other components and
related code such as event listeners. A complex application that uses numerous components
can be constructed from several specialized panel components. In this section we will exam-
ine such an application.

The Brandi’s Bagel House Application
Brandi’s Bagel House has a bagel and coffee delivery service for the businesses in her neigh-
borhood. Customers may call in and order white and whole wheat bagels with a variety
of toppings. In addition, customers may order three different types of coffee. (Delivery for
coffee alone is not available, however.) Here is a complete price list:

Bagels: White bagel $1.25, whole wheat bagel $1.50
Toppings: Cream cheese $0.50, butter $0.25, peach jelly $0.75, blueberry jam $0.75
Coffee: Regular coffee $1.25, decaf coffee $1.25, cappuccino $2.00

Brandi, the owner, needs an “order calculator” application that her staff can use to calcu-
late the price of an order as it is called in. The application should display the subtotal, the
amount of a 6 percent sales tax, and the total of the order. Figure 23-30 shows a sketch of
the application’s window. The user selects the type of bagel, toppings, and coffee, then clicks
the Calculate button. A dialog box appears displaying the subtotal, amount of sales tax, and
total. The user can exit the application by clicking either the Exit button or the standard
close button in the upper-right corner.

The layout shown in the sketch can be achieved using a BorderLayout manager with the
window’s content pane. The label that displays “Welcome to Brandi’s Bagel House” is in the
north region, the radio buttons for the bagel types are in the west region, the check boxes
for the toppings are in the center region, the radio buttons for the coffee selection are in the
east region, and the Calculate and Exit buttons are in the south region. To construct this
window, we create the following specialized panel classes that are extended from JPanel:

23.6	

M23_GADD7961_04_SE_C23.indd 64 2/12/18 3:28 PM

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-65

•	 GreetingsPanel. This panel contains the label that appears in the window’s north region.
•	 BagelPanel. This panel contains the radio buttons for the types of bagels.
•	 ToppingPanel. This panel contains the check boxes for the types of bagels.
•	 CoffeePanel. This panel contains the radio buttons for the coffee selections.

(We will not create a specialized panel for the Calculate and Exit buttons. The reason is
explained later.) After these classes have been created, we can create objects from them and
add the objects to the correct regions of the window’s content pane. Let’s take a closer look
at each of these classes.

The GreetingPanel Class
The GreetingPanel class holds the label displaying the text “Welcome to Brandi’s Bagel
House”. Code Listing 23-16 shows the class, which extends JPanel.

Figure 23-30  Sketch of the Order Calculator window  (Oracle Corporate Counsel)

Code Listing 23-16   (GreetingPanel.java)

 1 import javax.swing.*;
 2
 3 /**
 4 The GreetingPanel class displays a greeting in a panel.
 5 */
 6
 7 public class GreetingPanel extends JPanel
 8 {
 9 private JLabel greeting; // To display a greeting
10
11 /**
12 Constructor
13 */
14
15 public GreetingPanel()
16 {
17 // Create the label.

M23_GADD7961_04_SE_C23.indd 65 2/12/18 3:28 PM

23-66	 Chapter 23    A First Look at GUI Applications with Swing

In line 21 the add method is called to add the JLabel component referenced by greeting.
Notice that we are calling the method without an object reference and a dot preceding it.
This is because the method was inherited from the JPanel class, and we can call it just as if
it were written into the GreetingPanel class declaration.

When we create an instance of this class, we are creating a JPanel component that displays
a label with the text “Welcome to Brandi’s Bagel House”. Figure 23-31 shows how the
component will appear when it is placed in the window’s north region.

Code Listing 23-17   (BagelPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The BagelPanel class allows the user to select either
 6 a white or whole wheat bagel.
 7 */
 8
 9 public class BagelPanel extends JPanel
10 {
11 // The following constants are used to indicate
12 // the cost of each type of bagel.
13 public final double WHITE_BAGEL = 1.25;
14 public final double WHEAT_BAGEL = 1.50;
15
16 private JRadioButton whiteBagel; // To select white
17 private JRadioButton wheatBagel; // To select wheat

18 greeting = new JLabel("Welcome to Brandi's Bagel House");
19
20 // Add the label to this panel.
21 add(greeting);
22 }
23 }

Figure 23-31  Appearance of the GreetingPanel component

The BagelPanel Class
The BagelPanel class holds the radio buttons for the types of bagels. Notice that this panel
uses a GridLayout manager with two rows and one column. Code Listing 23-17 shows the
class, which is extended from JPanel.

M23_GADD7961_04_SE_C23.indd 66 2/12/18 3:28 PM

18 private ButtonGroup bg; // Radio button group
19
20 /**
21 Constructor
22 */
23
24 public BagelPanel()
25 {
26 // Create a GridLayout manager with
27 // two rows and one column.
28 setLayout(new GridLayout(2, 1));
29
30 // Create the radio buttons.
31 whiteBagel = new JRadioButton("White", true);
32 wheatBagel = new JRadioButton("Wheat");
33
34 // Group the radio buttons.
35 bg = new ButtonGroup();
36 bg.add(whiteBagel);
37 bg.add(wheatBagel);
38
39 // Add a border around the panel.
40 setBorder(BorderFactory.createTitledBorder("Bagel"));
41
42 // Add the radio buttons to the panel.
43 add(whiteBagel);
44 add(wheatBagel);
45 }
46
47 /**
48 getBagelCost method
49 @return The cost of the selected bagel.
50 */
51
52 public double getBagelCost()
53 {
54 double bagelCost = 0.0;
55
56 if (whiteBagel.isSelected())
57 bagelCost = WHITE_BAGEL;
58 else
59 bagelCost = WHEAT_BAGEL;
60
61 return bagelCost;
62 }
63 }

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-67

M23_GADD7961_04_SE_C23.indd 67 2/12/18 3:28 PM

23-68	 Chapter 23    A First Look at GUI Applications with Swing

Notice that the whiteBagel radio button is automatically selected when it is created.
This is the default choice. This class does not have an inner event listener class because
we do not want to execute any code when the user selects a bagel. Instead, we want
this class to be able to report the cost of the selected bagel. That is the purpose of the
getBagelCost method, which returns the cost of the selected bagel as a double. (This
method will be called by the Calculate button’s event listener.) Figure 23-32 shows how the
component appears when it is placed in the window’s west region.

Code Listing 23-18   (ToppingPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The ToppingPanel class allows the user to select
 6 the toppings for the bagel.
 7 */
 8
 9 public class ToppingPanel extends JPanel
10 {
11 // The following constants are used to indicate
12 // the cost of toppings.
13 public final double CREAM_CHEESE = 0.50;
14 public final double BUTTER = 0.25;
15 public final double PEACH_JELLY = 0.75;
16 public final double BLUEBERRY_JAM = 0.75;
17
18 private JCheckBox creamCheese; // To select cream cheese
19 private JCheckBox butter; // To select butter
20 private JCheckBox peachJelly; // To select peach jelly
21 private JCheckBox blueberryJam; // To select blueberry jam
22

Figure 23-32  Appearance of the BagelPanel component  (Oracle Corporate Counsel)

The ToppingPanel Class
The ToppingPanel class holds the check boxes for the available toppings. Code Listing 23-18
shows the class, which is also extended from JPanel.

M23_GADD7961_04_SE_C23.indd 68 2/12/18 3:28 PM

23 /**
24 Constructor
25 */
26
27 public ToppingPanel()
28 {
29 // Create a GridLayout manager with
30 // four rows and one column.
31 setLayout(new GridLayout(4, 1));
32
33 // Create the check boxes.
34 creamCheese = new JCheckBox("Cream cheese");
35 butter = new JCheckBox("Butter");
36 peachJelly = new JCheckBox("Peach jelly");
37 blueberryJam = new JCheckBox("Blueberry jam");
38
39 // Add a border around the panel.
40 setBorder(BorderFactory.createTitledBorder("Toppings"));
41
42 // Add the check boxes to the panel.
43 add(creamCheese);
44 add(butter);
45 add(peachJelly);
46 add(blueberryJam);
47 }
48
49 /**
50 getToppingCost method
51 @return The cost of the selected toppings.
52 */
53
54 public double getToppingCost()
55 {
56 double toppingCost = 0.0;
57
58 if (creamCheese.isSelected())
59 toppingCost += CREAM_CHEESE;
60 if (butter.isSelected())
61 toppingCost += BUTTER;
62 if (peachJelly.isSelected())
63 toppingCost += PEACH_JELLY;
64 if (blueberryJam.isSelected())
65 toppingCost += BLUEBERRY_JAM;
66
67 return toppingCost;
68 }
69 }

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-69

M23_GADD7961_04_SE_C23.indd 69 2/12/18 3:28 PM

23-70	 Chapter 23    A First Look at GUI Applications with Swing

As with the BagelPanel class, this class does not have an inner event listener class because
we do not want to execute any code when the user selects a topping. Instead, we want this
class to be able to report the total cost of all the selected toppings. That is the purpose of the
getToppingCost method, which returns the cost of all the selected toppings as a double.
(This method will be called by the Calculate button’s event listener.) Figure 23-33 shows how
the component appears when it is placed in the window’s center region.

Figure 23-33  Appearance of the ToppingPanel component  (Oracle Corporate Counsel)

Code Listing 23-19   (CoffeePanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The CoffeePanel class allows the user to select coffee.
 6 */
 7
 8 public class CoffeePanel extends JPanel
 9 {
10 // The following constants are used to indicate
11 // the cost of coffee.
12 public final double NO_COFFEE = 0.0;
13 public final double REGULAR_COFFEE = 1.25;
14 public final double DECAF_COFFEE = 1.25;
15 public final double CAPPUCCINO = 2.00;
16
17 private JRadioButton noCoffee; // To select no coffee
18 private JRadioButton regularCoffee; // To select regular coffee
19 private JRadioButton decafCoffee; // To select decaf
20 private JRadioButton cappuccino; // To select cappuccino
21 private ButtonGroup bg; // Radio button group
22
23 /**
24 Constructor

The CoffeePanel Class
The CoffeePanel class holds the radio buttons for the available coffee selections. Code
Listing 23-19 shows the class, which extends JPanel.

M23_GADD7961_04_SE_C23.indd 70 2/12/18 3:28 PM

25 */
26
27 public CoffeePanel()
28 {
29 // Create a GridLayout manager with
30 // four rows and one column.
31 setLayout(new GridLayout(4, 1));
32
33 // Create the radio buttons.
34 noCoffee = new JRadioButton("None");
35 regularCoffee = new JRadioButton("Regular coffee", true);
36 decafCoffee = new JRadioButton("Decaf coffee");
37 cappuccino = new JRadioButton("Cappuccino");
38
39 // Group the radio buttons.
40 bg = new ButtonGroup();
41 bg.add(noCoffee);
42 bg.add(regularCoffee);
43 bg.add(decafCoffee);
44 bg.add(cappuccino);
45
46 // Add a border around the panel.
47 setBorder(BorderFactory.createTitledBorder("Coffee"));
48
49 // Add the radio buttons to the panel.
50 add(noCoffee);
51 add(regularCoffee);
52 add(decafCoffee);
53 add(cappuccino);
54 }
55
56 /**
57 getCoffeeCost method
58 @return The cost of the selected coffee.
59 */
60
61 public double getCoffeeCost()
62 {
63 double coffeeCost = 0.0;
64
65 if (noCoffee.isSelected())
66 coffeeCost = NO_COFFEE;
67 else if (regularCoffee.isSelected())
68 coffeeCost = REGULAR_COFFEE;
69 else if (decafCoffee.isSelected())
70 coffeeCost = DECAF_COFFEE;
71 else if (cappuccino.isSelected())
72 coffeeCost = CAPPUCCINO;

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-71

M23_GADD7961_04_SE_C23.indd 71 2/12/18 3:28 PM

23-72	 Chapter 23    A First Look at GUI Applications with Swing

As with the BagelPanel and ToppingPanel classes, this class does not have an inner
event listener class because we do not want to execute any code when the user selects
coffee. Instead, we want this class to be able to report the cost of the selected coffee. The
getCoffeeCost method returns the cost of the selected coffee as a double. (This method will
be called by the Calculate button’s event listener.) Figure 23-34 shows how the component
appears when it is placed in the window’s east region.

Figure 23-34  Appearance of the CoffeePanel component

73
74 return coffeeCost;
75 }
76 }

Putting It All Together
The last step in creating this application is to write a class that builds the application’s window
and adds the Calculate and Exit buttons. This class, which we name OrderCalculatorGUI,
is extended from JFrame and uses a BorderLayout manager with its content pane.
Figure 23-35 shows how instances of the GreetingPanel, BagelPanel, ToppingPanel,
and CoffeePanel classes are placed in the content pane.

Figure 23-35  Placement of the custom panels

M23_GADD7961_04_SE_C23.indd 72 2/12/18 3:28 PM

We have not created a custom panel class to hold the Calculate and Exit buttons. The reason
is that the Calculate button’s event listener must call the getBagelCost, getToppingCost,
and getCoffeeCost methods. In order to call those methods, the event listener must
have access to the BagelPanel, ToppingPanel, and CoffeePanel objects that are cre-
ated in the OrderCalculatorGUI class. The approach taken in this example is to have the
OrderCalculatorGUI class itself create the buttons. The code for the OrderCalculatorGUI
class is shown in Code Listing 23-20.

Code Listing 23-20   (OrderCalculatorGUI.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The OrderCalculatorGUI class creates the GUI for the
 7 Brandi's Bagel House application.
 8 */
 9
 10 public class OrderCalculatorGUI extends JFrame
 11 {
 12 private BagelPanel bagels; // Bagel panel
 13 private ToppingPanel toppings; // Topping panel
 14 private CoffeePanel coffee; // Coffee panel
 15 private GreetingPanel banner; // To display a greeting
 16 private JPanel buttonPanel; // To hold the buttons
 17 private JButton calcButton; // To calculate the cost
 18 private JButton exitButton; // To exit the application
 19 private final double TAX_RATE = 0.06; // Sales tax rate
 20
 21 /**
 22 Constructor
 23 */
 24
 25 public OrderCalculatorGUI()
 26 {
 27 // Display a title.
 28 setTitle("Order Calculator");
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create a BorderLayout manager.
 34 setLayout(new BorderLayout());

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-73

M23_GADD7961_04_SE_C23.indd 73 2/12/18 3:28 PM

23-74	 Chapter 23    A First Look at GUI Applications with Swing

 35
 36 // Create the custom panels.
 37 banner = new GreetingPanel();
 38 bagels = new BagelPanel();
 39 toppings = new ToppingPanel();
 40 coffee = new CoffeePanel();
 41
 42 // Create the button panel.
 43 buildButtonPanel();
 44
 45 // Add the components to the content pane.
 46 add(banner, BorderLayout.NORTH);
 47 add(bagels, BorderLayout.WEST);
 48 add(toppings, BorderLayout.CENTER);
 49 add(coffee, BorderLayout.EAST);
 50 add(buttonPanel, BorderLayout.SOUTH);
 51
 52 // Pack the contents of the window and display it.
 53 pack();
 54 setVisible(true);
 55 }
 56
 57 /**
 58 The buildButtonPanel method builds the button panel.
 59 */
 60
 61 private void buildButtonPanel()
 62 {
 63 // Create a panel for the buttons.
 64 buttonPanel = new JPanel();
 65
 66 // Create the buttons.
 67 calcButton = new JButton("Calculate");
 68 exitButton = new JButton("Exit");
 69
 70 // Register the action listeners.
 71 calcButton.addActionListener(new CalcButtonListener());
 72 exitButton.addActionListener(new ExitButtonListener());
 73
 74 // Add the buttons to the button panel.
 75 buttonPanel.add(calcButton);
 76 buttonPanel.add(exitButton);
 77 }
 78
 79 /**
 80 Private inner class that handles the event when
 81 the user clicks the Calculate button.

M23_GADD7961_04_SE_C23.indd 74 2/12/18 3:28 PM

 82 */
 83
 84 private class CalcButtonListener implements ActionListener
 85 {
 86 public void actionPerformed(ActionEvent e)
 87 {
 88 // Variables to hold the subtotal, tax, and total
 89 double subtotal, tax, total;
 90
 91 // Calculate the subtotal.
 92 subtotal = bagels.getBagelCost() +
 93 toppings.getToppingCost() +
 94 coffee.getCoffeeCost();
 95
 96 // Calculate the sales tax.
 97 tax = subtotal * TAX_RATE;
 98
 99 // Calculate the total.
100 total = subtotal + tax;
101
102 // Display the charges.
103 JOptionPane.showMessageDialog(null,
104 String.format("Subtotal: $%,.2f\n" +
105 "Tax: $%,.2f\n" +
106 "Total: $%,.2f",
107 subtotal, tax, total));
108 }
109 }
110
111 /**
112 Private inner class that handles the event when
113 the user clicks the Exit button.
114 */
115
116 private class ExitButtonListener implements ActionListener
117 {
118 public void actionPerformed(ActionEvent e)
119 {
120 System.exit(0);
121 }
122 }
123
124 /**
125 main method
126 */
127

	 23.6  Focus on Problem Solving: Extending Classes from JPanel	 23-75

M23_GADD7961_04_SE_C23.indd 75 2/12/18 3:28 PM

23-76	 Chapter 23    A First Look at GUI Applications with Swing

128 public static void main(String[] args)
129 {
130 new OrderCalculatorGUI();
131 }
132 }

When the application runs, the window shown in Figure 23-36 appears. Figure 23-37 shows
the JOptionPane dialog box that is displayed when the user selects a wheat bagel with but-
ter, cream cheese, and decaf coffee.

Figure 23-36  The Order Calculator window  (Oracle Corporate Counsel)

Figure 23-37  The subtotal, tax, and total displayed  (Oracle Corporate Counsel)

23.7	 Splash Screens

CONCEPT:	 A splash screen is a graphic image that is displayed while an application
loads into memory and starts up.

Most major applications display a splash screen, which is a graphic image that is displayed
while the application is loading into memory. Splash screens usually show company logos
and keep the user’s attention while the application starts up. Splash screens are particularly
important for large applications that take a long time to load, because they assure the user
that the program is not malfunctioning.

M23_GADD7961_04_SE_C23.indd 76 2/12/18 3:28 PM

	 23.8  Using Console Output to Debug a GUI Application	 23-77

Beginning with Java 6, you can display splash screens with your Java applications. First, you
have to use a graphics program to create the image that you want to display. Java supports
splash screens in the GIF, PNG, or JPEG formats. (If you are using Windows, you can create
images with Microsoft Paint, which supports all of these formats.)

To display the splash screen you use the java command in the following way when you run
the application:

java -splash:GraphicFileName ClassFileName

GraphicFileName is the name of the file that contains the graphic image, and ClassFileName
is the name of the .class file that you are running. For example, in the same source code folder
as the Brandi’s Bagel House application, you will find a file named BrandiLogo.jpg. This
image, which is shown in Figure 23-38, is a logo for the Brandi’s Bagel House application. To
display the splash screen when the application starts, you would use the following command:

java splash:BrandiLogo.jpg Bagel

When you run this command, the graphic file will immediately be displayed in the center of
the screen. It will remain displayed until the application’s window appears.

Figure 23-38  Splash screen for the Brandi’s Bagel House application  (Oracle Corporate Counsel)

23.8	 Using Console Output to Debug a GUI Application

CONCEPT:	 When debugging a GUI application, you can use System.out.println
to send diagnostic messages to the console.

When an application is not performing correctly, programmers sometimes write statements
that display diagnostic messages into the application. For example, if an application is not
giving the correct result for a calculation, diagnostic messages can be displayed at various
points in the program’s execution showing the values of all the variables used in the calcula-
tion. If the trouble is caused by a variable that has not been properly initialized, or that has
not been assigned the correct value, the diagnostic messages reveal this problem. This helps
the programmer see what is going on “under the hood” while an application is running.

M23_GADD7961_04_SE_C23.indd 77 2/12/18 3:28 PM

23-78	 Chapter 23    A First Look at GUI Applications with Swing

The System.out.println method can be a valuable tool for displaying diagnostic mes-
sages in a GUI application. Because the System.out.println method sends its output to
the console, diagnostic messages can be displayed without interfering with the application’s
GUI windows.

Code Listing 23-21 shows an example. This is a modified version of the KiloConverter
class, discussed earlier in this chapter. Inside the actionPerformed method, which is in the
CalcButtonListener inner class, calls to the System.out.println method have been writ-
ten. The new code, which appears in lines 99 through 104 and 113 through 115, is shown
in bold. These new statements display the value that the application has retrieved from the
text field, and is working within its calculation. (This file is stored in the source code folder
Chapter 23\KiloConverter Phase 3.)

Code Listing 23-21   (KiloConverter.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for ActionListener Interface
 3
 4 /**
 5 The KiloConverter class displays a JFrame that
 6 lets the user enter a distance in kilometers. When
 7 the Calculate button is clicked, a dialog box is
 8 displayed with the distance converted to miles.
 9 */
 10
 11 public class KiloConverter extends JFrame
 12 {
 13 private JPanel panel; // To reference a panel
 14 private JLabel messageLabel; // To reference a label
 15 private JTextField kiloTextField; // To reference a text field
 16 private JButton calcButton; // To reference a button
 17 private final int WINDOW_WIDTH = 310; // Window width
 18 private final int WINDOW_HEIGHT = 100; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public KiloConverter()
 25 {
 26 // Set the window title.
 27 setTitle("Kilometer Converter");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify what happens when the close button is clicked.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

M23_GADD7961_04_SE_C23.indd 78 2/12/18 3:28 PM

	 23.8  Using Console Output to Debug a GUI Application	 23-79

 34
 35 // Build the panel and add it to the frame.
 36 buildPanel();
 37
 38 // Add the panel to the frame's content pane.
 39 add(panel);
 40
 41 // Display the window.
 42 setVisible(true);
 43 }
 44
 45 /**
 46 The buildPanel method adds a label, a text field,
 47 and a button to a panel.
 48 */
 49
 50 private void buildPanel()
 51 {
 52 // Create a label to display instructions.
 53 messageLabel = new JLabel("Enter a distance " +
 54 "in kilometers");
 55
 56 // Create a text field 10 characters wide.
 57 kiloTextField = new JTextField(10);
 58
 59 // Create a button with the caption "Calculate".
 60 calcButton = new JButton("Calculate");
 61
 62 // Add an action listener to the button.
 63 calcButton.addActionListener(new CalcButtonListener());
 64
 65 // Create a JPanel object and let the panel
 66 // field reference it.
 67 panel = new JPanel();
 68
 69 // Add the label, text field, and button
 70 // components to the panel.
 71 panel.add(messageLabel);
 72 panel.add(kiloTextField);
 73 panel.add(calcButton);
 74 }
 75
 76 /**
 77 CalcButtonListener is an action listener class for
 78 the Calculate button.
 79 */
 80
 81 private class CalcButtonListener implements ActionListener

M23_GADD7961_04_SE_C23.indd 79 2/12/18 3:28 PM

23-80	 Chapter 23    A First Look at GUI Applications with Swing

 82 {
 83 /**
 84 The actionPerformed method executes when the user
 85 clicks on the Calculate button.
 86 @param e The event object.
 87 */
 88
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 final double CONVERSION = 0.6214;
 92 String input; // To hold the user's input
 93 double miles; // The number of miles
 94
 95 // Get the text entered by the user into the
 96 // text field.
 97 input = kiloTextField.getText();
 98
 99 // For debugging, display the text entered, and
100 // its value converted to a double.
101 System.out.println("Reading " + input +
102 " from the text field.");
103 System.out.println("Converted value: " +
104 Double.parseDouble(input));
105
106 // Convert the input to miles.
107 miles = Double.parseDouble(input) * CONVERSION;
108
109 // Display the result.
110 JOptionPane.showMessageDialog(null, input +
111 " kilometers is " + miles + " miles.");
112
113 // For debugging, display a message indicating
114 // the application is ready for more input.
115 System.out.println("Ready for the next input.");
116 }
117 } // End of CalcButtonListener class
118
119 /**
120 The main method creates an instance of the
121 KiloConverter class, which displays
122 its window on the screen.
123 */
124
125 public static void main(String[] args)
126 {
127 new KiloConverter();
128 }
129 }

M23_GADD7961_04_SE_C23.indd 80 2/12/18 3:28 PM

	 23.8  Using Console Output to Debug a GUI Application	 23-81

Let’s take a closer look. In lines 101 and 102, a message is displayed to the console showing
the value that was read from the text field. In lines 103 and 104, another message is displayed
showing the value after it is converted to a double. Then, in line 115, a message is displayed
indicating that the application is ready for its next input. Figure 23-39 shows an example
session with the application on a computer running Microsoft Windows. Both the console
window and the application windows are shown.

Figure 23-39  Messages displayed to the console during the application’s execution 
(Oracle Corporate Counsel)

1. A command is typed in the console window to execute the
 application. The application's window appears.

3. The user dismisses the dialog box and a message is displayed in
 the console window indicating that the application is ready for the
 next input.

2. The user types a value into the text field and clicks the Calculate
 button. Debugging messages appear in the console window, and a
 message dialog appears showing the value converted to miles.

The messages that are displayed to the console are meant for only the programmer to see,
while he or she is debugging the application. Once the programmer is satisfied that the appli-
cation is running correctly, the calls to System.out.println can be taken out.

M23_GADD7961_04_SE_C23.indd 81 2/12/18 3:28 PM

23-82	 Chapter 23    A First Look at GUI Applications with Swing

Common Errors to Avoid
•	 Misspelling javax.swing in an import statement. Don’t forget the letter x that

appears after java in this import statement.
•	 Forgetting to specify the action taken when the user clicks on a JFrame’s close button.

By default, a window is hidden from view when the close button is clicked, but the
application is not terminated. If you wish to exit the application when a JFrame’s
close button is clicked, you must call the setDefaultCloseOperation method and
pass JFrame.EXIT_ON_CLOSE as the argument.

•	 Forgetting to write an event listener for each event you wish an application to respond
to. In order to respond to an event, you must write an event listener that implements
the proper type of interface, registered to the component that generates the event.

•	 Forgetting to register an event listener. Even if you write an event listener, it will not
execute unless it has been registered with the correct component.

•	 When writing an event listener method that is required by an interface, not using the
method header specified by the interface. The header of an actionPerformed method
must match that specified by the ActionListener interface. Also, the header of an
itemStateChanged method must match that specified by the ItemListener method.

•	 Placing components directly into the regions of a container governed by a
BorderLayout manager when you do not want the components resized or you want
to add more than one component per region. If you do not want the components that
you place in a BorderLayout region to be resized, place them in a JPanel component
and then add the JPanel component to the region.

•	 Placing components directly into the cells of a container governed by a GridLayout
manager when you do not want the components resized or you want to add more
than one component per cell. If you do not want the components that you place in a
GridLayout cell to be resized, place them in a JPanel component, and then add the
JPanel component to the cell.

•	 Forgetting to add JRadioButton components to a ButtonGroup object. A mutually
exclusive relationship is created between radio buttons only when they are added to
a ButtonGroup object.

23.9	

Review Questions and Exercises
Multiple Choice and True/False
1.	 With Swing, you use this class to create a frame.

a.	 Frame
b.	 SwingFrame
c.	 JFrame
d.	 JavaFrame

2.	 This is the part of a JFrame object that holds the components that have been added
to the JFrame object.
a.	 content pane
b.	 viewing area
c.	 component array
d.	 object collection

M23_GADD7961_04_SE_C23.indd 82 2/12/18 3:28 PM

	 Review Questions and Exercises	 23-83

3.	 This is a JPanel object’s default layout manager.
a.	 BorderLayout
b.	 GridLayout
c.	 FlowLayout
d.	 None

4.	 This is the default layout manager for a JFrame object’s content pane.
a.	 BorderLayout
b.	 GridLayout
c.	 FlowLayout
d.	 None

5.	 If a container is governed by a BorderLayout manager and you add a component to
it, but you do not pass the second argument specifying the region, this is the region in
which the component will be added.
a.	 north
b.	 south
c.	 east
d.	 center

6.	 Components in this/these regions of a BorderLayout manager are resized horizontally
so they fill up the entire region.
a.	 north and south
b.	 east and west
c.	 center only
d.	 north, south, east, and west

7.	 Components in this/these regions of a BorderLayout manager are resized vertically so
they fill up the entire region.
a.	 north and south
b.	 east and west
c.	 center only
d.	 north, south, east, and west

8.	 Components in this/these regions of a BorderLayout manager are resized both hori-
zontally and vertically so they fill up the entire region.
a.	 north and south
b.	 east and west
c.	 center only
d.	 north, south, east, and west

9.	 This is the default alignment of a FlowLayout manager.
a.	 left
b.	 center
c.	 right
d.	 no alignment

10.	 Adding radio button components to this type of object creates a mutually exclusive
relationship between them.
a.	 MutualExclude
b.	 RadioGroup
c.	 LogicalGroup
d.	 ButtonGroup

M23_GADD7961_04_SE_C23.indd 83 2/12/18 3:28 PM

23-84	 Chapter 23    A First Look at GUI Applications with Swing

11.	 You use this class to create Border objects.
a.	 BorderFactory
b.	 BorderMaker
c.	 BorderCreator
d.	 BorderSource

12.	 True or False: A panel cannot be displayed by itself.

13.	 True or False: You can place multiple components inside a GridLayout cell.

14.	 True or False: You can place multiple components inside a BorderLayout region.

15.	 True or False: You can place multiple components inside a container governed by a
FlowLayout manager.

16.	 True or False: You can place a panel inside a region governed by a BorderLayout manager.

17.	 True or False: A component placed in a GridLayout manager’s cell will not be resized
to fill up any extra space in the cell.

18.	 True or False: You normally add JCheckBox components to a ButtonGroup object.

19.	 True or False: A mutually exclusive relationship is automatically created among all
JRadioButton components in the same container.

20.	 True or False: You can write a class that extends the JPanel class.

Find the Error
1.	 The following statement is in a class that uses Swing components:

import java.swing.*;

2.	 The following is an inner class that will be registered as an action listener for a JButton
component:

private class ButtonListener implements ActionListener

{

 public void actionPerformed()

 {

 // Code appears here.

 }

}

3.	 The intention of the following statement is to give the panel object a GridLayout
manager with 10 columns and 5 rows:

panel.setLayout(new GridLayout(10, 5));

4.	 The panel variable references a JPanel governed by a BorderLayout manager. The
following statement attempts to add the button component to the north region of
panel:

panel.add(button, NORTH);

5.	 The panel variable references a JPanel object. The intention of the following state-
ment is to create a titled border around panel:

panel.setBorder(new BorderFactory("Choices"));

M23_GADD7961_04_SE_C23.indd 84 2/12/18 3:28 PM

	 Programming Challenges	 23-85

Algorithm Workbench
1.	 The variable myWindow references a JFrame object. Write a statement that sets the size

of the object to 500 pixels wide and 250 pixels high.

2.	 The variable myWindow references a JFrame object. Write a statement that causes the
application to end when the user clicks on the JFrame object’s close button.

3.	 The variable myWindow references a JFrame object. Write a statement that displays the
object’s window on the screen.

4.	 The variable myButton references a JButton object. Write the code to set the object’s
background color to white and foreground color to red.

5.	 Assume that a class inherits from the JFrame class. Write code that can appear in the
class constructor, which gives the content pane a FlowLayout manager. Components
added to the content pane should be aligned with the left edge of each row.

6.	 Assume that a class inherits from the JFrame class. Write code that can appear in the
class constructor, which gives the content pane a GridLayout manager with five rows
and 10 columns.

7.	 Assume that the variable panel references a JPanel object that uses a BorderLayout
manager. In addition, the variable button references a JButton object. Write code that
adds the button object to the panel object’s west region.

8.	 Write code that creates three radio buttons with the text “Option 1”, “Option 2”, and
“Option 3”. The radio button that displays the text “Option 1” should be initially
selected. Make sure these components are grouped so that a mutually exclusive rela-
tionship exists among them.

9.	 Assume that panel references a JPanel object. Write code that creates a two pixel thick
blue line border around it.

Short Answer
1.	 If you do not change the default close operation, what happens when the user clicks

on the close button on a JFrame object?

2.	 Why is it sometimes necessary to place a component inside a panel and then place the
panel inside a container governed by a BorderLayout manager?

3.	 In what type of situation would you present a group of items to the user with radio
buttons? With check boxes?

4.	 How can you create a specialized panel component that can be used to hold other
components and their related code?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Retail Price Calculator
Create a GUI application where the user enters the wholesale cost of an item and its markup
percentage into text fields. (For example, if an item’s wholesale cost is $5 and its markup

M23_GADD7961_04_SE_C23.indd 85 2/12/18 3:28 PM

23-86	 Chapter 23    A First Look at GUI Applications with Swing

percentage is 100 percent, then its retail price is $10.) The application should have a button
that displays the item’s retail price when clicked.

2. Monthly Sales Tax
A retail company must file a monthly sales tax report listing the total sales for the month,
and the amount of state and county sales tax collected. The state sales tax rate is 4 percent
and the county sales tax rate is 2 percent. Create a GUI application that allows the user to
enter the total sales for the month into a text field. From this figure, the application should
calculate and display the following:

•	 The amount of county sales tax
•	 The amount of state sales tax
•	 The total sales tax (county plus state)

In the application’s code, represent the county tax rate (0.02) and the state tax rate (0.04)
as named constants.

3. Property Tax
A county collects property taxes on the assessment value of property, which is 60 percent
of the property’s actual value. If an acre of land is valued at $10,000, its assessment value is
$6,000. The property tax is then $0.64 for each $100 of the assessment value. The tax for the
acre assessed at $6,000 will be $38.40. Create a GUI application that displays the assessment
value and property tax when a user enters the actual value of a property.

4. Travel Expenses
Create a GUI application that calculates and displays the total travel expenses of a business
person on a trip. Here is the information that the user must provide:

•	 Number of days on the trip
•	 Amount of airfare, if any
•	 Amount of car rental fees, if any
•	 Number of miles driven, if a private vehicle was used
•	 Amount of parking fees, if any
•	 Amount of taxi charges, if any
•	 Conference or seminar registration fees, if any
•	 Lodging charges, per night

The company reimburses travel expenses according to the following policy:

•	 $37 per day for meals
•	 Parking fees, up to $10.00 per day
•	 Taxi charges up to $20.00 per day
•	 Lodging charges up to $95.00 per day
•	 If a private vehicle is used, $0.27 per mile driven

The application should calculate and display the following:

•	 Total expenses incurred by the business person
•	 The total allowable expenses for the trip
•	 The excess that must be paid by the business person, if any
•	 The amount saved by the business person if the expenses are under the total allowed

The Monthly
Sales Tax
Problem

VideoNote

M23_GADD7961_04_SE_C23.indd 86 2/12/18 3:28 PM

	 Programming Challenges	 23-87

5. Theater Revenue
A movie theater only keeps a percentage of the revenue earned from ticket sales. The remain-
der goes to the movie company. Create a GUI application that allows the user to enter the
following data into text fields:

•	 Price per adult ticket
•	 Number of adult tickets sold
•	 Price per child ticket
•	 Number of child tickets sold

The application should calculate and display the following data for one night’s box office
business at a theater:

•	 Gross revenue for adult tickets sold. This is the amount of money taken in for all adult
tickets sold.

•	 Net revenue for adult tickets sold. This is the amount of money from adult ticket sales
left over after the payment to the movie company has been deducted.

•	 Gross revenue for child tickets sold. This is the amount of money taken in for all child
tickets sold.

•	 Net revenue for child tickets sold. This is the amount of money from child ticket sales
left over after the payment to the movie company has been deducted.

•	 Total gross revenue. This is the sum of gross revenue for adult and child tickets sold.
•	 Total net revenue. This is the sum of net revenue for adult and child tickets sold.

Assume the theater keeps 20 percent of its box office receipts. Use a constant in your code
to represent this percentage.

6. Joe’s Automotive
Joe’s Automotive performs the following routine maintenance services:

•	 Oil change—$26.00
•	 Lube job—$18.00
•	 Radiator flush—$30.00
•	 Transmission flush—$80.00
•	 Inspection—$15.00
•	 Muffler replacement—$100.00
•	 Tire rotation—$20.00

Joe also performs other nonroutine services and charges for parts and for labor ($20 per
hour). Create a GUI application that displays the total for a customer’s visit to Joe’s.

7. Long Distance Calls
A long-distance provider charges the following rates for telephone calls:

Rate Category Rate per Minute

Daytime (6:00 a.m. through 5:59 p.m.) $0.07

Evening (6:00 p.m. through 11:59 p.m.) $0.12

Off-Peak (12:00 a.m. through 5:59 a.m.) $0.05

M23_GADD7961_04_SE_C23.indd 87 2/12/18 3:28 PM

23-88	 Chapter 23    A First Look at GUI Applications with Swing

Create a GUI application that allows the user to select a rate category (from a set of radio
buttons), and enter the number of minutes of the call into a text field. A dialog box should
display the charge for the call.

8. Latin Translator
Look at the following list of Latin words and their meanings.

Latin English

sinister left

dexter right

medium center

Write a GUI application that translates the Latin words to English. The window should have
three buttons, one for each Latin word. When the user clicks a button, the program displays
the English translation in a label.

9. MPG Calculator
Write a GUI application that calculates a car’s gas mileage. The application should let
the user enter the number of gallons of gas the car holds, and the number of miles it can
be driven on a full tank. When a Calculate MPG button is clicked, the application should
display the number of miles that the car may be driven per gallon of gas. Use the following
formula to calculate MPG:

MPG =
Miles

Gallons

10. Celsius to Fahrenheit
Write a GUI application that converts Celsius temperatures to Fahrenheit temperatures. The
user should be able to enter a Celsius temperature, click a button, and then see the equivalent
Fahrenheit temperature. Use the following formula to make the conversion:

F =
9
5

 C + 32

F is the Fahrenheit temperature and C is the Celsius temperature.

M23_GADD7961_04_SE_C23.indd 88 2/12/18 3:28 PM

