
24-1

TOPICS

Advanced Swing GUI
ApplicationsC

H
A

P
T

E
R

24

	 24.1	 The Swing and AWT Class Hierarchy
	 24.2	 Read-Only Text Fields
	 24.3	 Lists
	 24.4	 Combo Boxes
	 24.5	 Displaying Images in Labels and

Buttons
	 24.6	 Mnemonics and Tool Tips

	 24.7	 File Choosers and Color Choosers
	 24.8	 Menus
	 24.9	 More about Text Components: Text

Areas and Fonts
	 24.10		 Sliders
	 24.11		 Look and Feel
	 24.12		� Common Errors to Avoid

The Swing and AWT Class Hierarchy
Now that you have used some of the fundamental GUI components, let’s look at how they
fit into the class hierarchy. Figure 24-1 shows the parts of the Swing and AWT class hierar-
chy that contain the JFrame, JPanel, JLabel, JTextField, JButton, JRadioButton, and
JCheckBox classes. Because of the inheritance relationships that exist, there are many other
classes in the figure as well.

The classes that are in the unshaded top part of the figure are AWT classes and are in the
java.awt package. The classes that are in the shaded bottom part of the figure are Swing
classes and are in the javax.swing package. Notice that all of the components we have
dealt with ultimately inherit from the Component class.

24.1

NOTE:   This chapter discusses GUI development using the Swing classes. Oracle has
announced that JavaFX is replacing Swing as the standard GUI library for Java. Swing
will remain part of the Java API for the foreseeable future, however, so we are providing
this chapter for you to use as you make the transition from Swing to JavaFX. To learn
about JavaFX, see Chapters 12, 13, and 14.

M24_GADD7961_04_SE_C24.indd 1 2/12/18 3:29 PM

24-2	 Chapter 24    Advanced Swing GUI Applications

Read-Only Text Fields

CONCEPT:	 A read-only text field displays text that can be changed by code in the
application, but cannot be edited by the user.

A read-only text field is not a new component, but a different way to use the JTextField
component. The JTextField component has a method named setEditable, which has
the following general format:

24.2	

Figure 24-1  Part of the Swing and AWT class hierarchy  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 2 2/12/18 3:29 PM

	 24.2  Read-Only Text Fields	 24-3

setEditable(boolean editable)

You pass a boolean argument to this method. By default a text field is editable, which means
that the user can enter data into it. If you call the setEditable method and pass false as
the argument, then the text field becomes read-only. This means it is not editable by the user.
Figure 24-2 shows a window that has three read-only text fields.

Figure 24-2  A window with three read-only text fields  (Oracle Corporate Counsel)

Read-Only Text Fields

The following code could be used to create the read-only text fields shown in the figure:

// Create a read-only text field for the subtotal.
JTextField subtotalField = new JTextField(10);
subtotalField.setEditable(false);

// Create a read-only text field for the sales tax.
JTextField taxField = new JTextField(10);
taxField.setEditable(false);

// Create a read-only text field for the total.
JTextField totalField = new JTextField(10);
totalField.setEditable(false);

A read-only text field looks like a label with a border drawn around it. You can use the
setText method to display data inside it. Here is an example:

subtotalField.setText("100.00");
taxField.setText("6.00");
totalField.setText("106.00");

This code causes the text fields to appear as shown in Figure 24-3.

Figure 24-3  Read-only text fields with data displayed  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 3 2/12/18 3:29 PM

24-4	 Chapter 24    Advanced Swing GUI Applications

When you create an instance of the JList class, you pass an array of objects to the construc-
tor. Here is the general format of the constructor call:

JList (Object[] array)

The JList component uses the array to create the list of items. In this text we always pass
an array of String objects to the JList constructor. For example, the list component shown
in Figure 24-4 could be created with the following code:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

Selection Modes
The JList component can operate in any of the following selection modes:

•	 Single Selection Mode. In this mode only one item can be selected at a time. When an
item is selected, any other item that is currently selected is deselected.

•	 Single Interval Selection Mode. In this mode multiple items can be selected, but they
must be in a single interval. An interval is a set of contiguous items.

•	 Multiple Interval Selection Mode. In this mode multiple items may be selected with no
restrictions. This is the default selection mode.

Figure 24-5 shows an example of a list in each type of selection mode.

Lists

CONCEPT:	 A list component displays a list of items and allows the user to select an
item from the list.

A list is a component that displays a list of items and also allows the user to select one or
more items from the list. Java provides the JList component for creating lists. Figure 24-4
shows an example. The JList component in the figure shows a list of names. At runtime,
the user may select an item in the list, which causes the item to appear highlighted. In the
figure, the first name is selected.

24.3	

Figure 24-4  A JList component  (Oracle Corporate Counsel)

VideoNote

The JList
Component

M24_GADD7961_04_SE_C24.indd 4 2/12/18 3:29 PM

	 24.3  Lists	 24-5

The default mode is multiple interval selection. To keep our applications simple, we will
use single selection mode for now. You change a JList component’s selection mode with
the setSelectionMode method. The method accepts an int argument that determines the
selection mode.

The ListSelectionModel class, which is in the javax.swing package, provides the follow-
ing constants that you can use as arguments to the setSelectionMode method:

•	 ListSelectionModel.SINGLE_SELECTION
•	 ListSelectionModel.SINGLE_INTERVAL_SELECTION
•	 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

Assuming that nameList references a JList component, the following statement sets the
component to single selection mode:

nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

Responding to List Events
When an item in a JList object is selected it generates a list selection event. You han-
dle list selection events with a list selection listener class, which must meet the following
requirements:

•	 It must implement the ListSelectionListener interface.
•	 It must have a method named valueChanged. This method must take an argument of

the ListSelectionEvent type.

Figure 24-5  Selection modes  (Oracle Corporate Counsel)

Single selection mode allows
only one item to be selected
at a time.

Single interval selection mode allows
a single interval of contiguous items
to be selected.

Multiple interval selection mode allows
multiple items to be selected with no
restrictions.

NOTE:  The ListSelectionListener interface is in the javax.swing.event package,
so you must have an import statement for that package in your source code.

Once you have written a list selection listener class, you create an object of that class and
then pass it as an argument to the JList component’s addListSelectionListener method.
When the JList component generates an event, it automatically executes the valueChanged
method of the list selection listener object, passing the event object as an argument. You will
see an example in a moment.

M24_GADD7961_04_SE_C24.indd 5 2/12/18 3:29 PM

24-6	 Chapter 24    Advanced Swing GUI Applications

Retrieving the Selected Item
You may use either the getSelectedValue method or the getSelectedIndex method to
determine which item in a list is currently selected. The getSelectedValue method returns a
reference to the item that is currently selected. For example, assume that nameList references
the JList component shown earlier in Figure 24-4. The following code retrieves a reference
to the name that is currently selected and assigns it to the selectedName variable:

String selectedName;
selectedName = (String) nameList.getSelectedValue();

Note that the return value of the getSelectedValue method is an Object reference. In
this code we had to cast the return value to the String type in order to store it in the
selectedName variable. If no item in the list is selected, the method returns null.

The getSelectedIndex method returns the index of the selected item, or -1 if no item is
selected. Internally, the items that are stored in a list are numbered. Each item’s number is
called its index. The first item (which is the item stored at the top of the list) has the index
0, the second item has the index 1, and so forth. You can use the index of the selected item
to retrieve the item from an array. For example, assume that the following code was used to
build the nameList component shown in Figure 24-4:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

Because the names array holds the values displayed in the namesList component, the fol-
lowing code could be used to determine the selected item:

int index;
String selectedName;
index = nameList.getSelectedIndex();
if (index != —1)
 selectedName = names[index];

The ListWindow class shown in Code Listing 24-1 demonstrates the concepts we have dis-
cussed so far. It uses a JList component with a list selection listener. When an item is selected
from the list, it is displayed in a read-only text field. The main method creates an instance
of the ListWindow class, which displays the window shown on the left in Figure 24-6. After
the user selects October from the list, the window appears as that shown on the right in the
figure.

Code Listing 24-1   (ListWindow.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class demonstrates the List Component.
 7 */

M24_GADD7961_04_SE_C24.indd 6 2/12/18 3:29 PM

	 24.3  Lists	 24-7

 8
 9 public class ListWindow extends JFrame
 10 {
 11 private JPanel monthPanel; // To hold components
 12 private JPanel selectedMonthPanel; // To hold components
 13 private JList monthList; // The months
 14 private JTextField selectedMonth; // The selected month
 15 private JLabel label; // A message
 16
 17 // The following array holds the values that will
 18 // be displayed in the monthList list component.
 19 private String[] months = { "January", "February",
 20 "March", "April", "May", "June", "July",
 21 "August", "September", "October", "November",
 22 "December" };
 23
 24 /**
 25 Constructor
 26 */
 27
 28 public ListWindow()
 29 {
 30 // Set the title.
 31 setTitle("List Demo");
 32
 33 // Specify an action for the close button.
 34 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 35
 36 // Add a BorderLayout manager.
 37 setLayout(new BorderLayout());
 38
 39 // Build the month and selectedMonth panels.
 40 buildMonthPanel();
 41 buildSelectedMonthPanel();
 42
 43 // Add the panels to the content pane.
 44 add(monthPanel, BorderLayout.CENTER);
 45 add(selectedMonthPanel, BorderLayout.SOUTH);
 46
 47 // Pack and display the window.
 48 pack();
 49 setVisible(true);
 50 }
 51
 52 /**
 53 The buildMonthPanel method adds a list containing
 54 the names of the months to a panel.
 55 */

M24_GADD7961_04_SE_C24.indd 7 2/12/18 3:29 PM

24-8	 Chapter 24    Advanced Swing GUI Applications

 56
 57 private void buildMonthPanel()
 58 {
 59 // Create a panel to hold the list.
 60 monthPanel = new JPanel();
 61
 62 // Create the list.
 63 monthList = new JList(months);
 64
 65 // Set the selection mode to single selection.
 66 monthList.setSelectionMode(
 67 ListSelectionModel.SINGLE_SELECTION);
 68
 69 // Register the list selection listener.
 70 monthList.addListSelectionListener(
 71 new ListListener());
 72
 73 // Add the list to the panel.
 74 monthPanel.add(monthList);
 75 }
 76
 77 /**
 78 The buildSelectedMonthPanel method adds an
 79 uneditable text field to a panel.
 80 */
 81
 82 private void buildSelectedMonthPanel()
 83 {
 84 // Create a panel to hold the text field.
 85 selectedMonthPanel = new JPanel();
 86
 87 // Create the label.
 88 label = new JLabel("You selected: ");
 89
 90 // Create the text field.
 91 selectedMonth = new JTextField(10);
 92
 93 // Make the text field uneditable.
 94 selectedMonth.setEditable(false);
 95
 96 // Add the label and text field to the panel.
 97 selectedMonthPanel.add(label);
 98 selectedMonthPanel.add(selectedMonth);
 99 }
100
101 /**
102 Private inner class that handles the event when
103 the user selects an item from the list.

M24_GADD7961_04_SE_C24.indd 8 2/12/18 3:29 PM

	 24.3  Lists	 24-9

104 */
105
106 private class ListListener
107 implements ListSelectionListener
108 {
109 public void valueChanged(ListSelectionEvent e)
110 {
111 // Get the selected month.
112 String selection =
113 (String) monthList.getSelectedValue();
114
115 // Put the selected month in the text field.
116 selectedMonth.setText(selection);
117 }
118 }
119
120 /**
121 The main method creates an instance of the
122 ListWindow class which causes it to display
123 its window.
124 */
125
126 public static void main(String[] args)
127 {
128 new ListWindow();
129 }
130 }

Figure 24-6  Window displayed by the ListWindow class  (Oracle Corporate Counsel)

Window as initially displayed. Window after the user selects October.

M24_GADD7961_04_SE_C24.indd 9 2/12/18 3:29 PM

24-10	 Chapter 24    Advanced Swing GUI Applications

Placing a Border around a List
As with other components, you can use the setBorder method, which was discussed in
Chapter 23, to draw a border around a JList. For example the following statement can be
used to draw a black 1-pixel thick line border around the monthList component:

monthList.setBorder(BorderFactory.createLineBorder(Color.BLACK, 1));

This code will cause the list to appear as shown in Figure 24-7.

Figure 24-7  List with a line border  (Oracle Corporate Counsel)

Adding a Scroll Bar to a List
By default, a list component is large enough to display all of the items it contains. Some-
times a list component contains too many items to be displayed at once, however. Most GUI
applications display a scroll bar on list components that contain a large number of items.
The user simply uses the scroll bar to scroll through the list of items.

List components do not automatically display a scroll bar. To display a scroll bar on a list
component, you must follow the following general steps:

1.	 Set the number of visible rows for the list component.
2.	 Create a scroll pane object and add the list component to it.
3.	 Add the scroll pane object to any other containers, such as panels.

Let’s take a closer look at how these steps can be used to apply a scroll bar to the list com-
ponent created in the following code:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

First, we establish the size of the list component with the JList class’s setVisibleRowCount
method. The following statement sets the number of visible rows in the nameList component
to three:

nameList.setVisibleRowCount(3);

M24_GADD7961_04_SE_C24.indd 10 2/12/18 3:29 PM

	 24.3  Lists	 24-11

This statement causes the nameList component to display only three items at a time.

Next, we create a scroll pane object and add the list component to it. A scroll pane object is a con-
tainer that displays scroll bars on any component it contains. In Java we use the JScrollPane
class to create a scroll pane object. We pass the object that we wish to add to the scroll pane as
an argument to the JScrollPane constructor. The following statement demonstrates:

JScrollPane scrollPane = new JScrollPane(nameList);

This statement creates a JScrollPane object and adds the nameList component to it.

Next, we add the scroll pane object to any other containers that are necessary for our GUI.
For example, the following code adds the scroll pane to a JPanel, which is then added to
the JFrame object’s content pane:

// Create a panel and add the scroll pane to it.
JPanel panel = new JPanel();
panel.add(scrollPane);

// Add the panel to this JFrame object's contentPane.
add(panel);

When the list component is displayed, it will appear as shown in Figure 24-8.

Although the list component displays only three items at a time, the user can scroll through
all of the items it contains.

The ListWindowWithScroll class shown in Code Listing 24-2 is a modification of the
ListWindow class. In this class, the monthList component shows only six items at a time,
but displays a scroll bar. The code shown in bold is the new lines that are used to add the
scroll bar to the list. The main method creates an instance of the class, which displays the
window shown in Figure 24-9.

Figure 24-8  List component with a scroll bar  (Oracle Corporate Counsel)

Figure 24-9  List component with scroll bars  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 11 2/12/18 3:29 PM

24-12	 Chapter 24    Advanced Swing GUI Applications

Code Listing 24-2   (ListWindowWithScroll.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class demonstrates the List Component.
 7 */
 8
 9 public class ListWindowWithScroll extends JFrame
 10 {
 11 private JPanel monthPanel; // To hold components
 12 private JPanel selectedMonthPanel; // To hold components
 13 private JList monthList; // The months
 14 private JScrollPane scrollPane; // A scroll pane
 15 private JTextField selectedMonth; // The selected month
 16 private JLabel label; // A message
 17
 18 // The following array holds the values that will
 19 // be displayed in the monthList list component.
 20 private String[] months = { "January", "February",
 21 "March", "April", "May", "June", "July",
 22 "August", "September", "October", "November",
 23 "December" };
 24
 25 /**
 26 Constructor
 27 */
 28
 29 public ListWindowWithScroll()
 30 {
 31 // Set the title.
 32 setTitle("List Demo");
 33
 34 // Specify an action for the close button.
 35 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 36
 37 // Add a BorderLayout manager.
 38 setLayout(new BorderLayout());
 39
 40 // Build the month and selectedMonth panels.
 41 buildMonthPanel();
 42 buildSelectedMonthPanel();
 43
 44 // Add the panels to the content pane.
 45 add(monthPanel, BorderLayout.CENTER);

M24_GADD7961_04_SE_C24.indd 12 2/12/18 3:29 PM

	 24.3  Lists	 24-13

 46 add(selectedMonthPanel, BorderLayout.SOUTH);
 47
 48 // Pack and display the window.
 49 pack();
 50 setVisible(true);
 51 }
 52
 53 /**
 54 The buildMonthPanel method adds a list containing
 55 the names of the months to a panel.
 56 */
 57
 58 private void buildMonthPanel()
 59 {
 60 // Create a panel to hold the list.
 61 monthPanel = new JPanel();
 62
 63 // Create the list.
 64 monthList = new JList(months);
 65
 66 // Set the selection mode to single selection.
 67 monthList.setSelectionMode(
 68 ListSelectionModel.SINGLE_SELECTION);
 69
 70 // Register the list selection listener.
 71 monthList.addListSelectionListener(
 72 new ListListener());
 73
 74 // Set the number of visible rows to 6.
 75 monthList.setVisibleRowCount(6);
 76
 77 // Add the list to a scroll pane.
 78 scrollPane = new JScrollPane(monthList);
 79
 80 // Add the scroll pane to the panel.
 81 monthPanel.add(scrollPane);
 82 }
 83
 84 /**
 85 The buildSelectedMonthPanel method adds an
 86 uneditable text field to a panel.
 87 */
 88
 89 private void buildSelectedMonthPanel()
 90 {
 91 // Create a panel to hold the text field.
 92 selectedMonthPanel = new JPanel();

M24_GADD7961_04_SE_C24.indd 13 2/12/18 3:29 PM

24-14	 Chapter 24    Advanced Swing GUI Applications

 93
 94 // Create the label.
 95 label = new JLabel("You selected: ");
 96
 97 // Create the text field.
 98 selectedMonth = new JTextField(10);
 99
100 // Make the text field uneditable.
101 selectedMonth.setEditable(false);
102
103 // Add the label and text field to the panel.
104 selectedMonthPanel.add(label);
105 selectedMonthPanel.add(selectedMonth);
106 }
107
108 /**
109 Private inner class that handles the event when
110 the user selects an item from the list.
111 */
112
113 private class ListListener
114 implements ListSelectionListener
115 {
116 public void valueChanged(ListSelectionEvent e)
117 {
118 // Get the selected month.
119 String selection =
120 (String) monthList.getSelectedValue();
121
122 // Put the selected month in the text field.
123 selectedMonth.setText(selection);
124 }
125 }
126
127 /**
128 The main method creates an instance of the
129 ListWindowWithScroll class which causes it
130 to display its window.
131 */
132
133 public static void main(String[] args)
134 {
135 new ListWindowWithScroll();
136 }
137 }

M24_GADD7961_04_SE_C24.indd 14 2/12/18 3:29 PM

	 24.3  Lists	 24-15

Adding Items to an Existing JList Component
The JList class’s setListData method allows you to store items in an existing JList
component. Here is the method’s general format:

void setListData(Object[] data)

The argument passed into data is an array of objects that will become the items displayed
in the JList component. Any items that are currently displayed in the component will be
replaced by the new items.

In addition to replacing the existing items in a list, you can use this method to add items to
an empty list. You can create an empty list by passing no argument to the JList constructor.
Here is an example:

JList nameList = new JList();

This statement creates an empty JList component referenced by the nameList variable.
You can then add items to the list, as shown here:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
nameList.setListData(names);

Multiple Selection Lists
For simplicity, the previous examples used a JList component in single selection mode. Recall
that the other two selection modes are single interval and multiple interval. Both of these
modes allow the user to select multiple items. Let’s take a closer look at each of these modes.

Single Interval Selection Mode
You put a JList component in single interval selection mode by passing the con-
stant ListSelectionModel.SINGLE_INTERVAL_SELECTION to the component’s
setSelectionMode method. In single interval selection mode, single or multiple items can
be selected. An interval is a set of contiguous items. (See Figure 24-5 to see an example of
an interval.)

To select an interval of items, the user selects the first item in the interval by clicking on it,
and then selects the last item in the interval by holding down the Shift key while clicking
on it. All of the items that appear in the list from the first item through the last item are
selected.

NOTE:  When a JList component is added to a JScrollPane object, a border will
automatically appear around the list.

NOTE:  By default, when a JList component is added to a JScrollPane object, the
scroll bar is only displayed when there are more items in the list than there are visible rows.

M24_GADD7961_04_SE_C24.indd 15 2/12/18 3:29 PM

24-16	 Chapter 24    Advanced Swing GUI Applications

In single interval selection mode, the getSelectedValue method returns the first item in the
selected interval. The getSelectedIndex method returns the index of the first item in the
selected interval. To get the entire selected interval, use the getSelectedValues method.
This method returns an array of objects. The array will hold the items in the selected interval.
You can also use the getSelectedIndices method, which returns an array of int values.
The values in the array will be the indices of all the selected items in the list.

Multiple Interval Selection Mode
You put a JList component in multiple interval selection mode by passing the con-
stant ListSelectionModel.MULTIPLE_INTERVAL_SELECTION to the component’s
setSelectionMode method. In multiple interval selection mode, multiple items can be
selected and the items do not have to be in the same interval. (See Figure 24-5 for an
example.)

In multiple interval selection mode, the user can select single items or intervals. When the
user holds down the Ctrl key while clicking on an item, it selects the item without deselect-
ing any items that are currently selected. This allows the user to select multiple items that
are not in an interval.

In multiple interval selection mode, the getSelectedValue method returns the first
selected item. The getSelectedIndex method returns the index of the first selected item.
The getSelectedValues method returns an array of objects containing the items that are
selected. The getSelectedIndices method returns an int array containing the indices of
all the selected items in the list.

The MultipleIntervalSelection class, shown in Code Listing 24-3, demonstrates a
JList component used in multiple interval selection mode. The main method creates an
instance of the class that displays the window shown on the left in Figure 24-10. When the
user selects items from the top JList component and then clicks the Get Selections button,
the selected items appear in the bottom JList component.

Code Listing 24-3   (MultipleIntervalSelection.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 This class demonstrates the List Component in
 7 multiple interval selection mode.
 8 */
 9
 10 public class MultipleIntervalSelection extends JFrame
 11 {
 12 private JPanel monthPanel; // To hold components
 13 private JPanel selectedMonthPanel; // To hold components
 14 private JPanel buttonPanel; // To hold the button
 15

M24_GADD7961_04_SE_C24.indd 16 2/12/18 3:29 PM

	 24.3  Lists	 24-17

 16 private JList monthList; // To hold months
 17 private JList selectedMonthList; // Selected months
 18
 19 private JScrollPane scrollPane1; // Scroll pane - first list
 20 private JScrollPane scrollPane2; // Scroll pane - second list
 21
 22 private JButton button; // A button
 23
 24 // The following array holds the values that
 25 // will be displayed in the monthList list component.
 26 private String[] months = { "January", "February",
 27 "March", "April", "May", "June", "July",
 28 "August", "September", "October", "November",
 29 "December" };
 30
 31 /**
 32 Constructor
 33 */
 34
 35 public MultipleIntervalSelection()
 36 {
 37 // Set the title.
 38 setTitle("List Demo");
 39
 40 // Specify an action for the close button.
 41 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 42
 43 // Add a BorderLayout manager.
 44 setLayout(new BorderLayout());
 45
 46 // Build the panels.
 47 buildMonthPanel();
 48 buildSelectedMonthsPanel();
 49 buildButtonPanel();
 50
 51 // Add the panels to the content pane.
 52 add(monthPanel, BorderLayout.NORTH);
 53 add(selectedMonthPanel,BorderLayout.CENTER);
 54 add(buttonPanel, BorderLayout.SOUTH);
 55
 56 // Pack and display the window.
 57 pack();
 58 setVisible(true);
 59 }
 60
 61 /**
 62 The buildMonthPanel method adds a list containing the
 63 names of the months to a panel.

M24_GADD7961_04_SE_C24.indd 17 2/12/18 3:29 PM

24-18	 Chapter 24    Advanced Swing GUI Applications

 64 */
 65
 66 private void buildMonthPanel()
 67 {
 68 // Create a panel to hold the list.
 69 monthPanel = new JPanel();
 70
 71 // Create the list.
 72 monthList = new JList(months);
 73
 74 // Set the selection mode to multiple
 75 // interval selection.
 76 monthList.setSelectionMode(
 77 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 78
 79 // Set the number of visible rows to 6.
 80 monthList.setVisibleRowCount(6);
 81
 82 // Add the list to a scroll pane.
 83 scrollPane1 = new JScrollPane(monthList);
 84
 85 // Add the scroll pane to the panel.
 86 monthPanel.add(scrollPane1);
 87 }
 88
 89 /**
 90 The buildSelectedMonthsPanel method adds a list
 91 to a panel. This will hold the selected months.
 92 */
 93
 94 private void buildSelectedMonthsPanel()
 95 {
 96 // Create a panel to hold the list.
 97 selectedMonthPanel = new JPanel();
 98
 99 // Create the list.
100 selectedMonthList = new JList();
101
102 // Set the number of visible rows to 6.
103 selectedMonthList.setVisibleRowCount(6);
104
105 // Add the list to a scroll pane.
106 scrollPane2 =
107 new JScrollPane(selectedMonthList);
108
109 // Add the scroll pane to the panel.
110 selectedMonthPanel.add(scrollPane2);

M24_GADD7961_04_SE_C24.indd 18 2/12/18 3:29 PM

	 24.3  Lists	 24-19

111 }
112
113 /**
114 The buildButtonPanel method adds a
115 button to a panel.
116 */
117
118 private void buildButtonPanel()
119 {
120 // Create a panel to hold the list.
121 buttonPanel = new JPanel();
122
123 // Create the button.
124 button = new JButton("Get Selections");
125
126 // Add an action listener to the button.
127 button.addActionListener(new ButtonListener());
128
129 // Add the button to the panel.
130 buttonPanel.add(button);
131 }
132
133 /**
134 Private inner class that handles the event when
135 the user clicks the button.
136 */
137
138 private class ButtonListener implements ActionListener
139 {
140 public void actionPerformed(ActionEvent e)
141 {
142 // Get the selected values.
143 Object[] selections =
144 monthList.getSelectedValues();
145
146 // Store the selected items in selectedMonthList.
147 selectedMonthList.setListData(selections);
148 }
149 }
150
151 /**
152 The main method creates an instance of the
153 MultipleIntervalSelection class which causes it
154 to display its window.
155 */
156
157 public static void main(String[] args)

M24_GADD7961_04_SE_C24.indd 19 2/12/18 3:29 PM

24-20	 Chapter 24    Advanced Swing GUI Applications

VideoNote

158 {
159 new MultipleIntervalSelection();
160 }
161 }

Figure 24-10  The window displayed by the MultipleIntervalSelection class  (Oracle
Corporate Counsel)

This is the window as it is intially displayed.

This is the window after the user has selected
some items from the top list and clicked the
Get Selections button.

Combo Boxes

CONCEPT:	 A combo box allows the user to select an item from a drop-down list.

A combo box presents a list of items that the user may select from. Unlike a list component,
a combo box presents its items in a drop-down list. You use the JComboBox class, which is
in the javax.swing package, to create a combo box. You pass an array of objects that are
to be displayed as the items in the drop-down list to the constructor. Here is an example:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);

When displayed, the combo box created by this code will initially appear as the button
shown on the left in Figure 24-11. The button displays the item that is currently selected.
Notice that the first item in the list is automatically selected when the combo box is first
displayed. When the user clicks the button, the drop-down list appears and the user may
select another item.

24.4	

The
JComboBox

Component

M24_GADD7961_04_SE_C24.indd 20 2/12/18 3:29 PM

	 24.4  Combo Boxes	 24-21

As you can see, a combo box is a combination of two components. In the case of the combo
box shown in Figure 24-11, it is the combination of a button and a list. This is where the
name “combo box” comes from.

Responding to Combo Box Events
When an item in a JComboBox object is selected, it generates an action event. As with
JButton components, you handle action events with an action event listener class, which
must have an actionPerformed method. When the user selects an item in a combo box,
the combo box executes its action event listener’s actionPerformed method, passing an
ActionEvent object as an argument.

Retrieving the Selected Item
There are two methods in the JComboBox class that you can use to determine which item
in a combo box is currently selected: getSelectedItem and getSelectedIndex. The
getSelectedItem method returns a reference to the item that is currently selected. For
example, assume that nameBox references the JComboBox component shown earlier in Figure
24-11. The following code retrieves a reference to the name that is currently selected and
assigns it to the selectedName variable:

String selectedName;
selectedName = (String) nameBox.getSelectedItem();

Note that the return value of the getSelectedItem method is an Object reference. In this
code we had to cast the return value to the String type to store it in the selectedName
variable.

The getSelectedIndex method returns the index of the selected item. As with JList compo-
nents, the items that are stored in a combo box are numbered with indices that start at 0. You
can use the index of the selected item to retrieve the item from an array. For example, assume
that the following code was used to build the nameBox component shown in Figure 24-11:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);

Figure 24-11  A combo box  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 21 2/12/18 3:29 PM

24-22	 Chapter 24    Advanced Swing GUI Applications

Because the names array holds the values displayed in the namesBox component, the follow-
ing code could be used to determine the selected item:

int index;
String selectedName;
index = nameList.getSelectedIndex();
selectedName = names[index];

The ComboBoxWindow class shown in Code Listing 24-4 demonstrates a combo box. It uses
a JComboBox component with an action listener. When an item is selected from the combo
box, it is displayed in a read-only text field. The main method creates an instance of the
class, which initially displays the window shown at the top left of Figure 24-12. When the
user clicks the combo box button, the drop-down list appears as shown in the top right of
the figure. After the user selects Espresso from the list, the window appears as shown at the
bottom of the figure.

Code Listing 24-4   (ComboBoxWindow.java)

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 /**
 6 This class demonstrates a combo box.
 7 */
 8
 9 public class ComboBoxWindow extends JFrame
 10 {

Figure 24-12  The window displayed by the ComboBoxWindow class  (Oracle Corporate Counsel)

This is the window that initially appears.
When the user clicks on the combo box
button, the drop-down list appears.

The item selected by the user appears
in the read-only text field.

M24_GADD7961_04_SE_C24.indd 22 2/12/18 3:29 PM

	 24.4  Combo Boxes	 24-23

 11 private JPanel coffeePanel; // To hold components
 12 private JPanel selectedCoffeePanel; // To hold components
 13 private JComboBox coffeeBox; // A list of coffees
 14 private JLabel label; // Displays a message
 15 private JTextField selectedCoffee; // Selected coffee
 16
 17 // The following array holds the values that will
 18 // be displayed in the coffeeBox combo box.
 19 private String[] coffee = { "Regular Coffee",
 20 "Dark Roast", "Cappuccino",
 21 "Espresso", "Decaf"};
 22
 23 /**
 24 Constructor
 25 */
 26
 27 public ComboBoxWindow()
 28 {
 29 // Set the title.
 30 setTitle("Combo Box Demo");
 31
 32 // Specify an action for the close button.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Create a BorderLayout manager.
 36 setLayout(new BorderLayout());
 37
 38 // Build the panels.
 39 buildCoffeePanel();
 40 buildSelectedCoffeePanel();
 41
 42 // Add the panels to the content pane.
 43 add(coffeePanel, BorderLayout.CENTER);
 44 add(selectedCoffeePanel, BorderLayout.SOUTH);
 45
 46 // Pack and display the window.
 47 pack();
 48 setVisible(true);
 49 }
 50
 51 /**
 52 The buildCoffeePanel method adds a combo box
 53 with the types of coffee to a panel.
 54 */
 55
 56 private void buildCoffeePanel()
 57 {
 58 // Create a panel to hold the combo box.

M24_GADD7961_04_SE_C24.indd 23 2/12/18 3:29 PM

24-24	 Chapter 24    Advanced Swing GUI Applications

 59 coffeePanel = new JPanel();
 60
 61 // Create the combo box.
 62 coffeeBox = new JComboBox(coffee);
 63
 64 // Register an action listener.
 65 coffeeBox.addActionListener(new ComboBoxListener());
 66
 67 // Add the combo box to the panel.
 68 coffeePanel.add(coffeeBox);
 69 }
 70
 71 /**
 72 The buildSelectedCoffeePanel method adds a
 73 read-only text field to a panel.
 74 */
 75
 76 private void buildSelectedCoffeePanel()
 77 {
 78 // Create a panel to hold the components.
 79 selectedCoffeePanel = new JPanel();
 80
 81 // Create the label.
 82 label = new JLabel("You selected: ");
 83
 84 // Create the uneditable text field.
 85 selectedCoffee = new JTextField(10);
 86 selectedCoffee.setEditable(false);
 87
 88 // Add the label and text field to the panel.
 89 selectedCoffeePanel.add(label);
 90 selectedCoffeePanel.add(selectedCoffee);
 91 }
 92
 93 /**
 94 Private inner class that handles the event when
 95 the user selects an item from the combo box.
 96 */
 97
 98 private class ComboBoxListener
 99 implements ActionListener
100 {
101 public void actionPerformed(ActionEvent e)
102 {
103 // Get the selected coffee.
104 String selection =
105 (String) coffeeBox.getSelectedItem();
106

M24_GADD7961_04_SE_C24.indd 24 2/12/18 3:29 PM

	 24.4  Combo Boxes	 24-25

107 // Display the selected coffee in the text field.
108 selectedCoffee.setText(selection);
109 }
110 }
111
112 /**
113 The main method creates an instance of the
114 ComboBoxWindow class, which causes it to display
115 its window.
116 */
117
118 public static void main(String[] args)
119 {
120 new ComboBoxWindow();
121 }
122 }

Editable Combo Boxes
There are two types of combo boxes: uneditable and editable. The default type of combo box
is uneditable. An uneditable combo box combines a button with a list and allows the user to
select items from its list only. This is the type of combo box used in the previous examples.

An editable combo box combines a text field and a list. In addition to selecting items from
the list, the user may also type input into the text field. You make a combo box editable by
calling the component’s setEditable method, passing true as the argument. Here is an
example:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);
nameBox.setEditable(true);

When displayed, the combo box created by this code initially appears as shown on the left of
Figure 24-13. An editable combo box appears as a text field with a small button displaying
an arrow joining it. The text field displays the item that is currently selected. When the user
clicks the button, the drop-down list appears, as shown in the center of the figure. The user
may select an item from the list. Alternatively, the user may type a value into the text field,
as shown on the right of the figure. The user is not restricted to the values that appear in the
list, and may type any input into the text field.

You can use the getSelectedItem method to retrieve a reference to the item that is currently
selected. This method returns the item that appears in the combo box’s text field, so it may
or may not be an item that appears in the combo box’s list.

The getSelectedIndex method returns the index of the selected item. However, if the
user has entered a value in the text field that does not appear in the list, this method will
return -1.

M24_GADD7961_04_SE_C24.indd 25 2/12/18 3:29 PM

24-26	 Chapter 24    Advanced Swing GUI Applications

Figure 24-13  An editable combo box  (Oracle Corporate Counsel)

 Checkpoint
 www.myprogramminglab.com

24.1	 How do you make a text field read-only? In code, how do you store text in a text field?

24.2	 What is the index of the first item stored in a JList or a JComboBox component? If
one of these components holds 12 items, what is the index of the 12th item?

24.3	 How do you retrieve the selected item from a JList component? How do you get
the index of the selected item?

24.4	 How do you cause a scroll bar to be displayed with a JList component?

24.5	 How do you retrieve the selected item from a JComboBox component? How do you
get the index of the selected item?

24.6	 What is the difference between an uneditable and an editable combo box? Which
of these is a combo box by default?

24.5	 Displaying Images in Labels and Buttons

CONCEPT:	 Images may be displayed in labels and buttons. You use the ImageIcon
class to get an image from a file.

In addition to displaying text in a label, you can also display an image. For example,
Figure 24-14 shows a window with two labels. The top label displays a smiley face image
and no text. The bottom label displays a smiley face image and text.

Figure 24-14  Labels displaying an image icon  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 26 2/12/18 3:29 PM

	 24.5  Displaying Images in Labels and Buttons	 24-27

To display an image, first you create an instance of the ImageIcon class, which can read the
contents of an image file. The ImageIcon class is part of the javax.swing package. The con-
structor accepts a String argument that is the name of an image file. The supported file types
are JPEG, GIF, and PNG. The name can also contain path information. Here is an example:

ImageIcon image = new ImageIcon("Smiley.gif");

This statement creates an ImageIcon object that reads the contents of the file Smiley.gif.
Because no path was given, it is assumed that the file is in the current directory or folder.
Here is an example that uses a path:

ImageIcon image = new ImageIcon("C:\\Chapter 24\\Images\\Smiley.gif");

Next, you can display the image in a label by passing the ImageIcon object as an argument
to the JLabel constructor. Here is the general format of the constructor:

JLabel(Icon image)

The argument passed to the image parameter can be an ImageIcon object or any object that
implements the Icon interface. Here is an example:

ImageIcon image = new ImageIcon("Smiley.gif");
JLabel label = new JLabel(image);

This creates a label with an image, but no text. You can also create a label with both an image
and text. An easy way to do this is to create the label with text, as usual, and then use the
JLabel class’s setIcon method to add an image to the label. The setIcon method accepts
an ImageIcon object as its argument. Here is an example:

JLabel label = new JLabel("Have a nice day!");
label.setIcon(image);

The text will be displayed to the right of the image. The JLabel class also has the following
constructor:

JLabel(String text, Icon image, int horizontalAlignment)

The first argument is the text to be displayed, the second argument is the image to be dis-
played, and the third argument is an int that specifies the horizontal alignment of the label
contents. You should use the constants SwingConstants.LEFT, SwingConstants.CENTER,
or SwingConstants.RIGHT to specify the horizontal alignment. Here is an example:

ImageIcon image = new ImageIcon("Smiley.gif");
JLabel label = new JLabel("Have a nice day!",
 image,
 SwingConstants.RIGHT);

You can also display images in buttons, as shown in Figure 24-15.

M24_GADD7961_04_SE_C24.indd 27 2/12/18 3:29 PM

24-28	 Chapter 24    Advanced Swing GUI Applications

The process of creating a button with an image is similar to that of creating a label with an
image. You use an ImageIcon object to read the image file, then pass the ImageIcon object
as an argument to the JButton constructor. To create a button with an image and no text,
pass only the ImageIcon object to the constructor. Here is an example:

// Create a button with an image, but no text.
ImageIcon image = new ImageIcon("Smiley.gif");
JButton button = new JButton(image);

To create a button with an image and text, pass a String and an ImageIcon object to the
constructor. Here is an example:

// Create a button with an image and text.
ImageIcon image = new ImageIcon("Smiley.gif");
JButton button = new JButton("Have a nice day!", image);

To add an image to an existing button, pass an ImageIcon object to the button’s setIcon
method. Here is an example:

// Create a button with an image and text.
JButton button = new JButton("Have a nice day!");
ImageIcon image = new ImageIcon("Smiley.gif");
button.setIcon(image);

You are not limited to small graphical icons when placing images in labels or buttons. For
example, the MyCatImage class in Code Listing 24-5 displays a digital photograph in a label
when the user clicks a button. The main method creates an instance of the class, which
displays the window shown at the left in Figure 24-16. When the user clicks the Get Image
button, the window displays the image shown at the right in the figure.

Code Listing 24-5   (MyCatImage.java)

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 /**
 6 This class demonstrates how to use an ImageIcon
 7 and a JLabel to display an image.
 8 */
 9

Figure 24-15  Buttons displaying an image icon  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 28 2/12/18 3:29 PM

	 24.5  Displaying Images in Labels and Buttons	 24-29

 10 public class MyCatImage extends JFrame
 11 {
 12 private JPanel imagePanel; // To hold the label
 13 private JPanel buttonPanel; // To hold a button
 14 private JLabel imageLabel; // To show an image
 15 private JButton button; // To get an image
 16
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public MyCatImage()
 23 {
 24 // Set the title.
 25 setTitle("My Cat");
 26
 27 // Specify an action for the close button.
 28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 29
 30 // Create a BorderLayout manager.
 31 setLayout(new BorderLayout());
 32
 33 // Build the panels.
 34 buildImagePanel();
 35 buildButtonPanel();
 36
 37 // Add the panels to the content pane.
 38 add(imagePanel, BorderLayout.CENTER);
 39 add(buttonPanel, BorderLayout.SOUTH);
 40
 41 // Pack and display the window.
 42 pack();
 43 setVisible(true);
 44 }
 45
 46 /**
 47 The buildImagePanel method adds a label to a panel.
 48 */
 49
 50 private void buildImagePanel()
 51 {
 52 // Create a panel.
 53 imagePanel = new JPanel();
 54
 55 // Create a label.
 56 imageLabel = new JLabel("Click the button to " +
 57 "see an image of my cat.");

M24_GADD7961_04_SE_C24.indd 29 2/12/18 3:29 PM

24-30	 Chapter 24    Advanced Swing GUI Applications

 58
 59 // Add the label to the panel.
 60 imagePanel.add(imageLabel);
 61 }
 62
 63 /**
 64 The buildButtonPanel method adds a button
 65 to a panel.
 66 */
 67
 68 private void buildButtonPanel()
 69 {
 70 ImageIcon smileyImage;
 71
 72 // Create a panel.
 73 buttonPanel = new JPanel();
 74
 75 // Get the smiley face image.
 76 smileyImage = new ImageIcon("Smiley.gif");
 77
 78 // Create a button.
 79 button = new JButton("Get Image");
 80 button.setIcon(smileyImage);
 81
 82 // Register an action listener with the button.
 83 button.addActionListener(new ButtonListener());
 84
 85 // Add the button to the panel.
 86 buttonPanel.add(button);
 87 }
 88
 89 /**
 90 Private inner class that handles the event when
 91 the user clicks the button.
 92 */
 93
 94 private class ButtonListener implements ActionListener
 95 {
 96 public void actionPerformed(ActionEvent e)
 97 {
 98 // Read the image file into an ImageIcon object.
 99 ImageIcon catImage = new ImageIcon("Cat.jpg");
100
101 // Display the image in the label.
102 imageLabel.setIcon(catImage);
103
104 // Remove the text from the label.
105 imageLabel.setText(null);

M24_GADD7961_04_SE_C24.indd 30 2/12/18 3:29 PM

	 24.5  Displaying Images in Labels and Buttons	 24-31

Let’s take a closer look at the MyCatImage class. After some initial setup, the constructor
calls the buildImagePanel method in line 34. Inside the buildImagePanel method, line 53
creates a JPanel component, referenced by the imagePanel variable, and then lines 56 and
57 create a JLabel component, referenced by the imageLabel variable. This is the label that
will display the image when the user clicks the button. The last statement in the method, in
line 60, adds the imageLabel component to the imagePanel panel.

Back in the constructor, line 35 calls the buildButtonPanel method, which creates the Get
Image button and adds it to a panel. An instance of the ButtonListener inner class is also regis-
tered as the button’s action listener. Let’s look at the ButtonListener class’s actionPerformed
method. This method is executed when the user clicks the Get Image button. First, in line 99,

106
107 // Pack the frame again to accommodate the
108 // new size of the label.
109 pack();
110 }
111 }
112
113 /**
114 The main method creates an instance of the
115 MyCatImage class, which causes it to display
116 its window.
117 */
118 public static void main(String[] args)
119 {
120 new MyCatImage();
121 }
122 }

Figure 24-16  Window displayed by the MyCatImage class  (Oracle Corporate Counsel)

This window initially appears.
When the user clicks the Get Image

button, this image appears.

M24_GADD7961_04_SE_C24.indd 31 2/12/18 3:29 PM

24-32	 Chapter 24    Advanced Swing GUI Applications

an ImageIcon object is created from the file Cat.jpg. This file is in the same directory as the
class. Next, in line 102, the image is stored in the imageLabel component. In line 105 the
text that is currently displayed in the label is removed by passing null to the imageLabel
component’s setText method. The last statement, in line 109, calls the JFrame class’s pack
method. When the image was loaded into the JLabel component, the component resized itself
to accommodate its new contents. The JFrame that encloses the window does not automatically
resize itself, so we must call the pack method. This forces the JFrame to resize itself.

 Checkpoint
 www.myprogramminglab.com

24.7	 How do you store an image in a JLabel component? How do you store both
an image and text in a JLabel component?

24.8	 How do you store an image in a JButton component? How do you store both
an image and text in a JButton component?

24.9	 What method do you use to store an image in an existing JLabel or JButton
component?

Mnemonics and Tool Tips

CONCEPT:	 A mnemonic is a key that you press while holding down the Alt key to
interact with a component. A tool tip is text that is displayed in a small
box when the user holds the mouse cursor over a component.

Mnemonics
A mnemonic is a key on the keyboard that you press in combination with the Alt key to
access a component such as a button quickly. These are sometimes referred to as shortcut
keys, or hot keys. When you assign a mnemonic to a button, the user can click the button
by holding down the Alt key and pressing the mnemonic key. Although users can interact
with components with either the mouse or their mnemonic keys, those who are quick with
the keyboard usually prefer to use mnemonic keys instead of the mouse.

You assign a mnemonic to a component through the component’s setMnemonic method,
which is inherited from the AbstractButton class. The method’s general format is as follows:

void setMnemonic(int key)

The argument that you pass to the method is an integer code that represents the key you wish
to assign as a mnemonic. The KeyEvent class, which is in the java.awt.event package, has
predefined constants that you can use. These constants take the form KeyEvent.VK_x, where
x is a key on the keyboard. For example, to assign the A key as a mnemonic, you would use
KeyEvent.VK_A. (The letters VK in the constants stand for “virtual key”.) Here is an example
of code that creates a button with the text “Exit” and assigns the X key as the mnemonic:

JButton exitButton = new JButton("Exit");
exitButton.setMnemonic(KeyEvent.VK_X);

24.6	

M24_GADD7961_04_SE_C24.indd 32 2/12/18 3:29 PM

	 24.6  Mnemonics and Tool Tips	 24-33

The user may click this button by pressing   +X on the keyboard. (This means holding
down the Alt key and pressing X.)

If the letter chosen as the mnemonic is in the component’s text, the first occurrence of that
letter will appear underlined when the component is displayed. For example, the button
created with the previous code has the text “Exit”. Because X was chosen as the mnemonic,
the letter x will appear underlined, as shown in Figure 24-17.

Figure 24-17  Button with mnemonic X  (Oracle Corporate Counsel)

If the mnemonic is a letter that does not appear in the component’s text, then no letter will
appear underlined.

NOTE:  The KeyEvent class also has constants for symbols. For example, the con-
stant for the ! symbol is VK_EXCLAMATION_MARK, and the constant for the & symbol is
VK_AMPERSAND. See the Java API documentation for the KeyEvent class for a list of all
the constants.

You can also assign mnemonics to radio buttons and check boxes, as shown in the follow-
ing code:

//Create three radio buttons and assign mnemonics.
JRadioButton rb1 = new JRadioButton("Breakfast");
rb1.setMnemonic(KeyEvent.VK_B);
JRadioButton rb2 = new JRadioButton("Lunch");
rb2.setMnemonic(KeyEvent.VK_L);
JRadioButton rb3 = new JRadioButton("Dinner");
rb3.setMnemonic(KeyEvent.VK_D);

// Create three check boxes and assign mnemonics.
JCheckBox cb1 = new JCheckBox("Monday");
cb1.setMnemonic(KeyEvent.VK_M);
JCheckBox cb2 = new JCheckBox("Wednesday");
cb2.setMnemonic(KeyEvent.VK_W);
JCheckBox cb3 = new JCheckBox("Friday");
cb3.setMnemonic(KeyEvent.VK_F);

This code will create the components shown in Figure 24-18.

M24_GADD7961_04_SE_C24.indd 33 2/12/18 3:29 PM

24-34	 Chapter 24    Advanced Swing GUI Applications

Tool Tips
A tool tip is text that is displayed in a small box when the user holds the mouse cursor over
a component. The box usually gives a short description of what the component does. Most
GUI applications use tool tips as a way of providing immediate and concise help to the user.
For example, Figure 24-19 shows a button with its tool tip displayed.

Figure 24-18  Radio buttons and check boxes with mnemonics assigned  (Oracle Corporate Counsel)

Figure 24-19  Button with tool tip displayed  (Oracle Corporate Counsel)

You assign a tool tip to a component with the setToolTipText method, which is inherited
from the JComponent class. Here is the method’s general format:

void setToolTipText(String text)

The String that is passed as an argument is the text that will be displayed in the component’s
tool tip. For example, the following code creates the Exit button shown in Figure 24-19 and
its associated tool tip:

JButton exitButton = new JButton("Exit");
exitButton.setToolTipText("Click here to exit.");

 Checkpoint
 www.myprogramminglab.com

24.10	 What is a mnemonic? How do you assign a mnemonic to a component?

24.11	 What is a tool tip? How do you assign a tool tip to a component?

24.7	 File Choosers and Color Choosers

CONCEPT:	 Java provides components that equip your applications with standard
dialog boxes for opening files, saving files, and selecting colors.

M24_GADD7961_04_SE_C24.indd 34 2/12/18 3:29 PM

	 24.7  File Choosers and Color Choosers	 24-35

File Choosers
A file chooser is a specialized dialog box that allows the user to browse for a file and select
it. Figure 24-20 shows an example of a file chooser dialog box.

Figure 24-20  A file chooser dialog box for opening a file  (Oracle Corporate Counsel)

You create an instance of the JFileChooser class, which is part of the javax.swing pack-
age, to display a file chooser dialog box. The class has several constructors. We will focus
on two of them, which have the following general formats:

JFileChooser()
JFileChooser(String path)

The first constructor shown takes no arguments. This constructor uses the default directory
as the starting point for all of its dialog boxes. If you are using Windows, this will probably
be the “My Documents” folder under your account. If you are using UNIX, this will be your
login directory. The second constructor takes a String argument containing a valid path.
This path will be the starting point for the object’s dialog boxes.

A JFileChooser object can display two types of predefined dialog boxes: an open file dia-
log box and a save file dialog box. Figure 24-20 shows an example of an open file dialog
box. It lets the user browse for an existing file to open. A save file dialog box, as shown in
Figure 24-21, is employed when the user needs to browse to a location to save a file. Both
of these dialog boxes appear the same, except the open file dialog box displays “Open” in
its title bar, and the save file dialog box displays “Save.” Also, the open file dialog box has
an Open button, and the save file dialog box has a Save button. There is no difference in
the way they operate.

Displaying a File Chooser Dialog Box
To display an open file dialog box, use the showOpenDialog method. The method’s general
format is as follows:

int showOpenDialog(Component parent)

M24_GADD7961_04_SE_C24.indd 35 2/12/18 3:29 PM

24-36	 Chapter 24    Advanced Swing GUI Applications

The argument can be either null or a reference to a component. If you pass null, the dialog
box is normally centered in the screen. If you pass a reference to a component, such as JFrame,
the dialog box is displayed over the component.

To display a save file dialog box, use the showSaveDialog method. The method’s general
format is as follows:

int showSaveDialog(Component parent)

Once again, the argument can be either null or a reference to a component. Both the
showOpenDialog and showSaveDialog methods return an integer that indicates the action
taken by the user to close the dialog box. You can compare the return value to one of the
following constants:

•	 JFileChooser.CANCEL_OPTION. This return value indicates that the user clicked
the Cancel button.

•	 JFileChooser.APPROVE_OPTION. This return value indicates that the user clicked
the Open or Save button.

•	 JFileChooser.ERROR_OPTION. This return value indicates that an error occurred,
or the user clicked the standard close button on the window to dismiss it.

If the user selected a file, you can use the getSelectedFile method to determine the file
that was selected. The getSelectedFile method returns a File object, which contains data
about the selected file. The File class is part of the java.io package. You can use the File
object’s getPath method to get the path and file name as a String. Here is an example:

JFileChooser fileChooser = new JFileChooser();
int status = fileChooser.showOpenDialog(null);
if (status == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = fileChooser.getSelectedFile();
 String filename = selectedFile.getPath();
 JOptionPane.showMessageDialog(null, "You selected " + filename);
}

Figure 24-21  A save file dialog box  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 36 2/12/18 3:29 PM

	 24.7  File Choosers and Color Choosers	 24-37

Color Choosers
A color chooser is a specialized dialog box that allows the user to select a color from a pre-
defined palette of colors. Figure 24-22 shows an example of a color chooser. By clicking the
HSB tab you can select a color by specifying its hue, saturation, and brightness. By clicking
the RGB tab you can select a color by specifying its red, green, and blue components.

You use the JColorChooser class, which is part of the javax.swing package, to display a
color chooser dialog box. You do not create an instance of the class, however. It has a static
method named showDialog, with the following general format:

Color showDialog(Component parent, String title, Color initial)

The first argument can be either null or a reference to a component. If you pass null, the
dialog box is normally centered in the screen. If you pass a reference to a component, such
as JFrame, the dialog box is displayed over the component. The second argument is text that
is displayed in the dialog box’s title bar. The third argument indicates the color that appears
initially selected in the dialog box. This method returns the color selected by the user. The
following code is an example. This code allows the user to select a color, and then that color
is assigned as a panel’s background color.

JPanel panel = new JPanel();
Color selectedColor;
selectedColor = JColorChooser.showDialog(null,
 "Select a Background Color", Color.BLUE);
panel.setBackground(selectedColor);

Figure 24-22  A color chooser dialog box  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 37 2/12/18 3:29 PM

24-38	 Chapter 24    Advanced Swing GUI Applications

24.8	 Menus

CONCEPT:	 Java provides classes for creating systems of drop-down menus. Menus
can contain menu items, checked menu items, radio button menu items,
and other menus.

In the GUI applications you have studied so far, the user initiates actions by clicking com-
ponents such as buttons. When an application has several operations for the user to choose
from, a menu system is more commonly used than buttons. A menu system is a collection of
commands organized in one or more drop-down menus. Before learning how to construct a
menu system, you must learn about the basic items that are found in a typical menu system.
Look at the example menu system in Figure 24-23.

Figure 24-23  Example menu system  (Oracle Corporate Counsel)

Menu Bar

Menu Items

Submenu
Check Box Menu Item

Radio Button Menu Items

Menu

Separator Bar

The menu system in the figure consists of the following items:

•	 Menu Bar. At the top of the window, just below the title bar, is a menu bar. The menu
bar lists the names of one or more menus. The menu bar in Figure 24-23 shows the
names of two menus: File and Edit.

•	 Menu. A menu is a drop-down list of menu items. The user may activate a menu by
clicking on its name on the menu bar. In the figure, the Edit menu has been activated.

•	 Menu Item. A menu item can be selected by the user. When a menu item is selected,
some type of action is usually performed.

•	 Check box menu item. A check box menu item appears with a small box beside it. The
item may be selected or deselected. When it is selected, a check mark appears in the
box. When it is deselected, the box appears empty. Check box menu items are normally
used to turn an option on or off. The user toggles the state of a check box menu item
each time he or she selects it.

•	 Radio button menu item. A radio button menu item may be selected or deselected. A
small circle appears beside it that is filled in when the item is selected and empty when
the item is deselected. Like a check box menu item, a radio button menu item can be
used to turn an option on or off. When a set of radio button menu items are grouped

M24_GADD7961_04_SE_C24.indd 38 2/12/18 3:29 PM

	 24.8  Menus	 24-39

with a ButtonGroup object, only one of them can be selected at a time. When the user
selects a radio button menu item, the one that was previously selected is deselected.

•	 Submenu. A menu within a menu is called a submenu. Some of the commands on a
menu are actually the names of submenus. You can tell when a command is the name
of a submenu because a small right arrow appears to its right. Activating the name of
a submenu causes the submenu to appear. For example, in Figure 24-23, clicking on
the Sort command causes a submenu to appear.

•	 Separator bar. A separator bar is a horizontal bar that is used to separate groups of
items on a menu. Separator bars are only used as a visual aid and cannot be selected
by the user.

A menu system is constructed with the following classes:

•	 JMenuItem. Use this class to create a regular menu item. A JMenuItem component
generates an action event when the user selects it.

•	JCheckBoxMenuItem. Use this class to create a check box menu item. The class’s
isSelected method returns true if the item is selected, or false otherwise. A
JCheckBoxMenuItem component generates an action event when the user selects it.

•	 JRadioButtonMenuItem. Use this class to create a radio button menu item.
JRadioButtonMenuItem components can be grouped in a ButtonGroup object so
that only one of them can be selected at a time. The class’s isSelected method returns
true if the item is selected, or false otherwise. A JRadioButtonMenuItem component
generates an action event when the user selects it.

•	 JMenu. Use this class to create a menu. A JMenu component can contain JMenuItem,
JCheckBoxMenuItem, and JRadioButton components, as well as other JMenu com-
ponents. A submenu is a JMenu component that is inside another JMenu component.

•	 JMenuBar. Use this class to create a menu bar. A JMenuBar object can contain JMenu
components.

All of these classes are in the javax.swing package. A menu system is a JMenuBar component
that contains one or more JMenu components. Each JMenu component can contain JMenuItem,
JRadioButtonMenuItem, and JCheckBoxMenuItem components, as well as other JMenu com-
ponents. The classes contain all of the code necessary to operate the menu system.

To see an example of an application that uses a menu system, we look at the MenuWindow
class shown in Code Listing 24-6. The class displays the window shown in Figure 24-24.

Figure 24-24  Window displayed by the MenuWindow class  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 39 2/12/18 3:29 PM

24-40	 Chapter 24    Advanced Swing GUI Applications

The class demonstrates how a label appears in different colors. Notice that the window has
a menu bar with two menus: File and Text. Figure 24-25 shows a sketch of the menu system.
When the user opens the Text menu, he or she can select a color using the radio button menu
items and the label will change to the selected color. The Text menu also contains a Visible
item, which is a check box menu item. When this item is selected (checked), the label is vis-
ible. When this item is deselected (unchecked), the label is invisible.

Figure 24-25  Sketch of the MenuWindow class’s menu system  (Oracle Corporate Counsel)

Code Listing 24-6   (MenuWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The MenuWindow class demonstrates a menu system.
 7 */
 8
 9 public class MenuWindow extends JFrame
 10 {
 11 private JLabel messageLabel; // Displays a message
 12 private final int LABEL_WIDTH = 400; // Label's width
 13 private final int LABEL_HEIGHT = 200; // Label's height
 14
 15 // The following will reference menu components.
 16 private JMenuBar menuBar; // The menu bar
 17 private JMenu fileMenu; // The File menu
 18 private JMenu textMenu; // The Text menu
 19 private JMenuItem exitItem; // To exit
 20 private JRadioButtonMenuItem blackItem; // Makes text black
 21 private JRadioButtonMenuItem redItem; // Makes text red
 22 private JRadioButtonMenuItem blueItem; // Makes text blue
 23 private JCheckBoxMenuItem visibleItem; // Toggle visibility
 24
 25 /**
 26 Constructor
 27 */
 28

M24_GADD7961_04_SE_C24.indd 40 2/12/18 3:29 PM

	 24.8  Menus	 24-41

 29 public MenuWindow()
 30 {
 31 // Set the title.
 32 setTitle("Example Menu System");
 33
 34 // Specify an action for the close button.
 35 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 36
 37 // Create the messageLabel label.
 38 messageLabel = new JLabel("Use the Text menu to " +
 39 "change my color and make me invisible.",
 40 SwingConstants.CENTER);
 41
 42 // Set the label's preferred size.
 43 messageLabel.setPreferredSize(
 44 new Dimension(LABEL_WIDTH, LABEL_HEIGHT));
 45
 46 // Set the label's foreground color.
 47 messageLabel.setForeground(Color.BLACK);
 48
 49 // Add the label to the content pane.
 50 add(messageLabel);
 51
 52 // Build the menu bar.
 53 buildMenuBar();
 54
 55 // Pack and display the window.
 56 pack();
 57 setVisible(true);
 58 }
 59
 60 /**
 61 The buildMenuBar method builds the menu bar.
 62 */
 63
 64 private void buildMenuBar()
 65 {
 66 // Create the menu bar.
 67 menuBar = new JMenuBar();
 68
 69 // Create the file and text menus.
 70 buildFileMenu();
 71 buildTextMenu();
 72
 73 // Add the file and text menus to the menu bar.
 74 menuBar.add(fileMenu);
 75 menuBar.add(textMenu);
 76

M24_GADD7961_04_SE_C24.indd 41 2/12/18 3:29 PM

24-42	 Chapter 24    Advanced Swing GUI Applications

 77 // Set the window's menu bar.
 78 setJMenuBar(menuBar);
 79 }
 80
 81 /**
 82 The buildFileMenu method builds the File menu
 83 and returns a reference to its JMenu object.
 84 */
 85
 86 private void buildFileMenu()
 87 {
 88 // Create an Exit menu item.
 89 exitItem = new JMenuItem("Exit");
 90 exitItem.setMnemonic(KeyEvent.VK_X);
 91 exitItem.addActionListener(new ExitListener());
 92
 93 // Create a JMenu object for the File menu.
 94 fileMenu = new JMenu("File");
 95 fileMenu.setMnemonic(KeyEvent.VK_F);
 96
 97 // Add the Exit menu item to the File menu.
 98 fileMenu.add(exitItem);
 99 }
100
101 /**
102 The buildTextMenu method builds the Text menu
103 and returns a reference to its JMenu object.
104 */
105
106 private void buildTextMenu()
107 {
108 // Create the radio button menu items to change
109 // the color of the text. Add an action listener
110 // to each one.
111 blackItem = new JRadioButtonMenuItem("Black", true);
112 blackItem.setMnemonic(KeyEvent.VK_B);
113 blackItem.addActionListener(new ColorListener());
114
115 redItem = new JRadioButtonMenuItem("Red");
116 redItem.setMnemonic(KeyEvent.VK_R);
117 redItem.addActionListener(new ColorListener());
118
119 blueItem = new JRadioButtonMenuItem("Blue");
120 blueItem.setMnemonic(KeyEvent.VK_U);
121 blueItem.addActionListener(new ColorListener());
122
123 // Create a button group for the radio button items.
124 ButtonGroup group = new ButtonGroup();

M24_GADD7961_04_SE_C24.indd 42 2/12/18 3:29 PM

	 24.8  Menus	 24-43

125 group.add(blackItem);
126 group.add(redItem);
127 group.add(blueItem);
128
129 // Create a check box menu item to make the text
130 // visible or invisible.
131 visibleItem = new JCheckBoxMenuItem("Visible", true);
132 visibleItem.setMnemonic(KeyEvent.VK_V);
133 visibleItem.addActionListener(new VisibleListener());
134
135 // Create a JMenu object for the Text menu.
136 textMenu = new JMenu("Text");
137 textMenu.setMnemonic(KeyEvent.VK_T);
138
139 // Add the menu items to the Text menu.
140 textMenu.add(blackItem);
141 textMenu.add(redItem);
142 textMenu.add(blueItem);
143 textMenu.addSeparator(); // Add a separator bar.
144 textMenu.add(visibleItem);
145 }
146
147 /**
148 Private inner class that handles the event that
149 is generated when the user selects Exit from
150 the File menu.
151 */
152
153 private class ExitListener implements ActionListener
154 {
155 public void actionPerformed(ActionEvent e)
156 {
157 System.exit(0);
158 }
159 }
160
161 /**
162 Private inner class that handles the event that
163 is generated when the user selects a color from
164 the Text menu.
165 */
166
167 private class ColorListener implements ActionListener
168 {
169 public void actionPerformed(ActionEvent e)
170 {
171 if (blackItem.isSelected())
172 messageLabel.setForeground(Color.BLACK);

M24_GADD7961_04_SE_C24.indd 43 2/12/18 3:29 PM

24-44	 Chapter 24    Advanced Swing GUI Applications

Let’s take a closer look at the MenuWindow class. Before we examine how the menu system is
constructed, we should explain the code in lines 38 through 44. Lines 38 through 40 create
the messageLabel component and align its text in the label’s center. Then, in lines 43 and
44, the setPreferredSize method is called. The setPreferredSize method is inherited
from the JComponent class, and it establishes a component’s preferred size. It is called the
preferred size because the layout manager adjusts the component’s size when necessary.
Normally, a label’s preferred size is determined automatically, depending on its contents.
We want to make this label larger, however, so the window will be larger when it is packed
around the label.

The setPreferredSize method accepts a Dimension object as its argument. A Dimension
object specifies a component’s width and height. The first argument to the Dimension class

173 else if (redItem.isSelected())
174 messageLabel.setForeground(Color.RED);
175 else if (blueItem.isSelected())
176 messageLabel.setForeground(Color.BLUE);
177 }
178 }
179
180 /**
181 Private inner class that handles the event that
182 is generated when the user selects Visible from
183 the Text menu.
184 */
185
186 private class VisibleListener implements ActionListener
187 {
188 public void actionPerformed(ActionEvent e)
189 {
190 if (visibleItem.isSelected())
191 messageLabel.setVisible(true);
192 else
193 messageLabel.setVisible(false);
194 }
195 }
196
197 /**
198 The main method creates an instance of the
199 MenuWindow class, which causes it to display
200 its window.
201 */
202
203 public static void main(String[] args)
204 {
205 MenuWindow mw = new MenuWindow();
206 }
207 }

M24_GADD7961_04_SE_C24.indd 44 2/12/18 3:29 PM

	 24.8  Menus	 24-45

constructor is the component’s width, and the second argument is the component’s height. In
this class, the LABEL_WIDTH and LABEL_HEIGHT constants are defined with the values 400 and
200 respectively. So, this statement sets the label’s preferred size to 400 pixels wide by 200
pixels high. (The Dimension class is part of the java.awt package.) Notice from Figure 24-24
that this code does not affect the size of the text that is displayed in the label, only the size of
the label component.

To create the menu system, the constructor calls the buildMenuBar method in line 53. Inside
this method, the statement in line 67 creates a JMenuBar component and assigns its address
to the menuBar variable. The JMenuBar component acts as a container for JMenu compo-
nents. The menu bar in this application has two menus: File and Text.

Next, the statement in line 70 calls the buildFileMenu method. The buildFileMenu
method creates the File menu, which has only one item: Exit. The statement in line 89 cre-
ates a JMenuItem component for the Exit item, which is referenced by the exitItem vari-
able. The String that is passed to the JMenuItem constructor is the text that will appear on
a menu for this menu item. The statement in line 90 assigns the x key as a mnemonic to the
exitItem component. Then, line 91 creates an action listener for the component (an instance
of ExitListener, a private inner class), which causes the application to end.

Next, line 94 creates a JMenu object for the File menu. Notice that the name of the menu is
passed as an argument to the JMenu constructor. Line 95 assigns the F key to the File menu
as a mnemonic. The last statement in the buildFileMenu method, in line 98, adds exitItem
to the fileMenu component.

Back in the buildMenuBar method, the statement in line 71 calls the buildTextMenu
method. The buildTextMenu method builds the Text menu, which has three radio button
menu items (Black, Red, and Blue), a separator bar, and a check box menu item (Visible).
The code in lines 111 through 121 creates the radio button menu items, assigns mnemonic
keys to them, and adds an action listener to each.

The JRadioButtonItem constructor accepts a String argument, which is the menu item’s
text. By default, a radio button menu item is not initially selected. The constructor can also
accept an optional second argument, which is a boolean value indicating whether the item
should be initially selected. Notice that in line 111, true is passed as the second argument to
the JRadioButtonItem constructor. This causes the Black menu item to be initially selected.

Next, in lines 124 through 127, a button group is created and the radio button menu
items are added to it. As with JRadioButton components, JRadioButtonMenuItem compo-
nents may be grouped in a ButtonGroup object. As a result, only one of the grouped menu
items may be selected at a time. When one is selected, any other menu item in the group is
deselected.

Next, the Visible item, a check box menu item, is created in line 131. Notice that true is
passed as the second argument to the constructor. This causes the item to be initially selected.
A mnemonic key is assigned in line 132, and an action listener is added to the component
in line 133.

Line 136 creates a JMenu component for the Text menu, and line 137 assigns a mnemonic
key to it. Lines 140 through 142 add the blackItem, redItem, and blueItem radio but-
ton menu items to the Text menu. In line 143, the addSeparator method is called to add
a separator bar to the menu. Because the addSeparator method is called just after the

M24_GADD7961_04_SE_C24.indd 45 2/12/18 3:29 PM

24-46	 Chapter 24    Advanced Swing GUI Applications

blueItem component is added and just before the visibleItem component is added, it
will appear between the Blue and Visible items on the menu. Line 144 adds the Visible item
to the Text menu.

Back in the buildMenuBar method, in lines 74 and 75, the File menu and Text menu are
added to the menu bar. In line 78, the setJMenuBar method is called, passing menuBar as
an argument. The setJMenuBar method is a JFrame method that places a menu bar in a
frame. You pass a JMenuBar component as the argument. When the JFrame is displayed,
the menu bar will appear at its top.

Figure 24-26 shows how the class’s window appears with the File menu and the Text menu
opened. Selecting a color from the Text menu causes an instance of the ColorListener
class to execute its actionPerformed method, which changes the color of the text.
Selecting the Visible item causes an instance of the VisibleListener class to execute its
actionPerformed method, which toggles the label’s visibility.

Figure 24-26  The window with the File menu and Text menu opened  (Oracle Corporate Counsel)

The window with the File menu opened.

The window with the Text menu opened.

M24_GADD7961_04_SE_C24.indd 46 2/12/18 3:29 PM

	 24.9  More about Text Components: Text Areas and Fonts 	 24-47

 Checkpoint
 www.myprogramminglab.com

24.12	 Briefly describe each of the following menu system items:
a)	 Menu bar
b)	 Menu item
c)	 Check box menu item
d)	 Radio button menu item
e)	 Submenu
f)	 Separator bar

24.13	 What class do you use to create a regular menu item? What do you pass to the class
constructor?

24.14	 What class do you use to create a radio button menu item? What do you pass to
the class constructor? How do you cause it to be initially selected?

24.15	 How do you create a relationship between radio button menu items so that only
one may be selected at a time?

24.16	 What class do you use to create a check box menu item? What do you pass to the
class constructor? How do you cause it to be initially selected?

24.17	 What class do you use to create a menu? What do you pass to the class
constructor?

24.18	 What class do you use to create a menu bar?

24.19	 How do you place a menu bar in a JFrame?

24.20	 What type of event do menu items generate when selected by the user?

24.21	 How do you change the size of a component such as a JLabel after it has been
created?

24.22	 What arguments do you pass to the Dimension class constructor?

24.9	 More about Text Components:
Text Areas and Fonts

CONCEPT:	 A text area is a multi-line text field that can accept several lines of text
input. Components that inherit from the JComponent class have a
setFont method that allows you to change the font and style of the com-
ponent’s text.

Text Areas
In Chapter 23, you were introduced to the JTextField class, which is used to create text
fields. A text field is a component that allows the user to enter a single line of text. A text
area is like a text field that can accept multiple lines of input. You use the JTextArea class
to create a text area. Here is the general format of two of the class’s constructors:

JTextArea(int rows, int columns)
JTextArea(String text, int rows, int columns)

M24_GADD7961_04_SE_C24.indd 47 2/12/18 3:29 PM

24-48	 Chapter 24    Advanced Swing GUI Applications

In both constructors, rows is the number of rows or lines of text that the text area is to
display, and columns is the number of columns or characters that are to be displayed per
line. In the second constructor, text is a string that the text area will initially display. For
example, the following statement creates a text area with 20 rows and 40 columns:

JTextArea textInput = new JTextArea(20, 40);

The following statement creates a text area with 20 rows and 40 columns that will initially
display the text stored in the String object info:

JTextArea textInput = new JTextArea(info, 20, 40);

As with the JTextField class, the JTextArea class provides the getText and setText
methods for getting and setting the text contained in the component. For example, the fol-
lowing statement gets the text stored in the textInput text area and stores it in the String
object userText:

String userText = textInput.getText();

The following statement stores the text that is in the String object info in the textInput
text area:

textInput.setText(info);

JTextArea components do not automatically display scroll bars. To display scroll bars on a
JTextArea component, you must add it to the scroll pane. As you already know, you create
a scroll pane with the JScrollPane class. Here is an example of code that creates a text
area and adds it to a scroll pane:

JTextArea textInput = new JTextArea(20, 40);
JScrollPane scrollPane = new JScrollPane(textInput);

The JScrollPane object displays both vertical and horizontal scroll bars on a text area. By
default, the scroll bars are not displayed until they are needed; however, you can alter this behav-
ior with two of the JScrollPane class’s methods. The setHorizontalScrollBarPolicy
method takes an int argument that specifies when a horizontal scroll bar should appear in
the scroll pane. You can pass one of the following constants as an argument:

•	 JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED. This is the default setting.
A horizontal scroll bar is displayed only when there is not enough horizontal space to
display the text contained in the text area.

•	 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER. This setting prevents a horizon-
tal scroll bar from being displayed in the text area.

•	 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS. With this setting, a horizontal
scroll bar is always displayed, even when it is not needed.

The setVerticalScrollBarPolicy method also takes an int argument, which specifies
when a vertical scroll bar should appear in the scroll pane. You can pass one of the follow-
ing constants as an argument:

•	 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED. This is the default setting. A
vertical scroll bar is displayed only when there is not enough vertical space to display
the text contained in the text area.

M24_GADD7961_04_SE_C24.indd 48 2/12/18 3:29 PM

	 24.9  More about Text Components: Text Areas and Fonts 	 24-49

•	 JScrollPane.VERTICAL_SCROLLBAR_NEVER. This setting prevents a vertical
scroll bar from being displayed in the text area.

•	 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS. With this setting, a vertical scroll
bar is always displayed, even when it is not needed.

For example, the following code specifies that a vertical scroll bar should always appear on
a scroll pane’s component, but a horizontal scroll bar should not appear:

scrollPane.setHorizontalScrollBarPolicy(
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
scrollPane.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

Figure 24-27 shows a text area without scroll bars, a text area with a vertical scroll bar, and
a text area with both a horizontal and a vertical scroll bar.

Figure 24-27  Text areas with and without scroll bars  (Oracle Corporate Counsel)

A text area with a vertical and
a horizontal scroll bar.A text area with a vertical scroll bar.A text area with no scroll bars.

By default, JTextArea components do not perform line wrapping. This means that when text
is entered into the component and the end of a line is reached, the text does not wrap around
to the next line. If you want line wrapping, you use the JTextArea class’s setLineWrap
method to turn it on. The method accepts a boolean argument. If you pass true, line wrap-
ping is turned on. If you pass false, line wrapping is turned off. Here is an example of a
statement that turns a text area’s line wrapping on:

textInput.setLineWrap(true);

There are two different styles of line wrapping: word wrapping and character wrapping.
When word wrapping is performed, the line breaks always occur between words, never in
the middle of a word. When character wrapping is performed, lines are broken between
characters. This means that lines can be broken in the middle of a word. You specify the style
of line wrapping that you prefer with the JTextArea class’s setWrapStyleWord method.
This method accepts a boolean argument. If you pass true, the text area will perform word
wrapping. If you pass false, the text area will perform character wrapping. The default
style is character wrapping.

M24_GADD7961_04_SE_C24.indd 49 2/12/18 3:29 PM

24-50	 Chapter 24    Advanced Swing GUI Applications

Fonts
The appearance of a component’s text is determined by the text’s font, style, and size. The
font is the name of the typeface—the style can be plain, bold, and/or italic—and the size is
the size of the text in points. To change the appearance of a component’s text you use the
component’s setFont method, which is inherited from the JComponent class. The general
format of the method is as follows:

void setFont(Font appearance)

You pass a Font object as an argument to this method. The Font class constructor has the
following general format:

Font(String fontName, int style, int size);

The first argument is the name of a font. Although the fonts that are available vary from
system to system, Java guarantees that you will have Dialog, DialogInput, Monospaced,
SansSerif, and Serif. Figure 24-28 shows an example of each of these.

Figure 24-28  Examples of fonts  (Oracle Corporate Counsel)

The second argument to the Font constructor is an int that represents the style of the text.
The Font class provides the following constants that you can use: Font.PLAIN, Font.BOLD,
and Font.ITALIC. The third argument is the size of the text in points. (There are 72 points
per inch, so a 72-point font has a height of one inch. Ten- and twelve-point fonts are nor-
mally used for most applications.) Here is an example of a statement that changes the text
of a label to a 24-point bold serif font:

label.setFont(new Font("Serif", Font.BOLD, 24));

You can combine styles by mathematically adding them. For example, the following state-
ment changes a label’s text to a 24-point bold and italic serif font:

label.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

Figure 24-29 shows an example of the serif font in plain, bold, italic, and bold plus italic
styles. The following code was used to create the labels:

JLabel label1 = new JLabel("Serif Plain", SwingConstants.CENTER);
label1.setFont(new Font("Serif", Font.PLAIN, 24));

JLabel label2 = new JLabel("Serif Bold", SwingConstants.CENTER);
label2.setFont(new Font("Serif", Font.BOLD, 24));

M24_GADD7961_04_SE_C24.indd 50 2/12/18 3:29 PM

JLabel label3 = new JLabel("Serif Italic", SwingConstants.CENTER);
label3.setFont(new Font("Serif", Font.ITALIC, 24));

JLabel label4 = new JLabel("Serif Bold + Italic",
 SwingConstants.CENTER);
label4.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

Figure 24-29  Examples of serif plain, bold, italic, and bold plus italic  (Oracle Corporate Counsel)

 Checkpoint
 www.myprogramminglab.com

24.23	 What arguments do you pass to the JTextArea constructor?

24.24	 How do you retrieve the text that is stored in a JTextArea component?

24.25	 Does the JTextArea component automatically display scroll bars? If not, how do
you accomplish this?

24.26	 What is line wrapping? What are the two styles of line wrapping? How do you turn
a JTextArea component’s line wrapping on? How do you select a line wrapping
style?

24.27	 What type of argument does a component’s setFont method accept?

24.28	 What are the arguments that you pass to the Font class constructor?

See the Simple Text Editor Application case study on this book’s companion Web site
(www.pearson.com/gaddis) for an in-depth example that uses menus and other topics
from this chapter.

24.10	Sliders

CONCEPT:	 A slider is a component that allows the user to adjust a number graphi-
cally within a range of values.

Sliders, which are created from the JSlider class, display an image of a “slider knob” that
can be dragged along a track. Sliders can be horizontally or vertically oriented, as shown in
Figure 24-30.

	 24.10  Sliders	 24-51

M24_GADD7961_04_SE_C24.indd 51 2/12/18 3:29 PM

24-52	 Chapter 24    Advanced Swing GUI Applications

A slider is designed to represent a range of numeric values. At one end of the slider is the range’s
minimum value and at the other end is the range’s maximum value. Both of the sliders shown in
Figure 24-30 represent a range of 0 through 50. Sliders hold a numeric value in a field, and as
the user moves the knob along the track, the numeric value is adjusted accordingly. Notice that
the sliders in Figure 24-30 have accompanying tick marks. At every tenth value, a major tick
mark is displayed along with a label indicating the value at that tick mark. Between the major
tick marks are minor tick marks, which in this example are displayed at every second value. The
appearance of tick marks, their spacing, and the appearance of labels can be controlled through
methods in the JSlider class. The JSlider constructor has the following general format:

JSlider(int orientation, int minValue,
 int maxValue, int initialValue)

Figure 24-30  A horizontal and a vertical slider  (Oracle Corporate Counsel)

Horizontal Slider

Vertical Slider

The first argument is an int specifying the slider’s orientation. You should use one of the con-
stants JSlider.HORIZONTAL or JSlider.VERTICAL. The second argument is the minimum
value of the slider’s range and the third argument is the maximum value of the slider’s range. The
fourth argument is the initial value of the slider, which determines the initial position of the slider’s
knob. For example, the following code could be used to create the sliders shown in Figure 24-30:

JSlider slider1 = new JSlider(JSlider.HORIZONTAL, 0, 50, 25);
JSlider slider2 = new JSlider(JSlider.VERTICAL, 0, 50, 25);

You set the major and minor tick mark spacing with the methods setMajorTickSpacing
and setMinorTickSpacing. Each of these methods accepts an int argument that specifies
the intervals of the tick marks. For example, the following code sets the slider1 object’s
major tick mark spacing at 10, and its minor tick mark spacing at 2:

slider1.setMajorTickSpacing(10);
slider1.setMinorTickSpacing(2);

If the slider1 component’s range is 0 through 50, then these statements would cause major
tick marks to be displayed at values 0, 10, 20, 30, 40, and 50. Minor tick marks would be
displayed at values 2, 4, 6, and 8, then at values 12, 14, 16, and 18, and so forth.

M24_GADD7961_04_SE_C24.indd 52 2/12/18 3:29 PM

	 24.10  Sliders	 24-53

By default, tick marks are not displayed, and setting their spacing does not cause them to be
displayed. You display tick marks by calling the setPaintTicks method, which accepts a
boolean argument. If you pass true, then tick marks are displayed. If you pass false, they
are not displayed. Here is an example:

slider1.setPaintTicks(true);

By default, labels are not displayed either. You display numeric labels on the slider compo-
nent by calling the setPaintLabels method, which accepts a boolean argument. If you pass
true, then numeric labels are displayed at the major tick marks. If you pass false, labels
are not displayed. Here is an example:

slider1.setPaintLabels(true);

When the knob’s position is moved, the slider component generates a change event. To
handle the change event, you must write a change listener class. When you write a change
listener class, it must meet the following requirements:

•	 It must implement the ChangeListener interface. This interface is in the
javax.swing.event package.

•	 It must have a method named stateChanged. This method must take an argument of
the ChangeEvent type.

To retrieve the current value stored in a JSlider, use the getValue method. This method
returns the slider’s value as an int. Here is an example:

currentValue = slider1.getValue();

The TempConverter class shown in Code Listing 24-7 demonstrates the JSlider compo-
nent. This class displays the window shown in Figure 24-31. Two temperatures are initially
shown: 32.0 degrees Fahrenheit and 0.0 degrees Celsius. A slider, which has the range of 0
through 100, allows you to adjust the Celsius temperature and immediately see the Fahren-
heit conversion. The main method creates an instance of the class and displays the window.

Figure 24-31  Window displayed by the TempConverterWindow class  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 53 2/12/18 3:29 PM

24-54	 Chapter 24    Advanced Swing GUI Applications

Code Listing 24-7   (TempConverter.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class displays a window with a slider component.
 7 The user can convert the Celsius temperatures from
 8 0 through 100 to Fahrenheit by moving the slider.
 9 */
 10
 11 public class TempConverter extends JFrame
 12 {
 13 private JLabel label1, label2; // Message labels
 14 private JTextField fahrenheitTemp; // Fahrenheit temp
 15 private JTextField celsiusTemp; // Celsius temp
 16 private JPanel fpanel; // Fahrenheit panel
 17 private JPanel cpanel; // Celsius panel
 18 private JPanel sliderPanel; // Slider panel
 19 private JSlider slider; // Temperature adjuster
 20
 21 /**
 22 Constructor
 23 */
 24
 25 public TempConverter()
 26 {
 27 // Set the title.
 28 setTitle("Temperatures");
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create the message labels.
 34 label1 = new JLabel("Fahrenheit: ");
 35 label2 = new JLabel("Celsius: ");
 36
 37 // Create the read-only text fields.
 38 fahrenheitTemp = new JTextField("32.0", 10);
 39 fahrenheitTemp.setEditable(false);
 40 celsiusTemp = new JTextField("0.0", 10);
 41 celsiusTemp.setEditable(false);
 42
 43 // Create the slider.
 44 slider = new JSlider(JSlider.HORIZONTAL, 0, 100, 0);
 45 slider.setMajorTickSpacing(20); // Major tick every 20

M24_GADD7961_04_SE_C24.indd 54 2/12/18 3:29 PM

	 24.10  Sliders	 24-55

 46 slider.setMinorTickSpacing(5); // Minor tick every 5
 47 slider.setPaintTicks(true); // Display tick marks
 48 slider.setPaintLabels(true); // Display numbers
 49 slider.addChangeListener(new SliderListener());
 50
 51 // Create panels and place the components in them.
 52 fpanel = new JPanel();
 53 fpanel.add(label1);
 54 fpanel.add(fahrenheitTemp);
 55 cpanel = new JPanel();
 56 cpanel.add(label2);
 57 cpanel.add(celsiusTemp);
 58 sliderPanel = new JPanel();
 59 sliderPanel.add(slider);
 60
 61 // Create a GridLayout manager.
 62 setLayout(new GridLayout(3, 1));
 63
 64 // Add the panels to the content pane.
 65 add(fpanel);
 66 add(cpanel);
 67 add(sliderPanel);
 68
 69 // Pack and display the frame.
 70 pack();
 71 setVisible(true);
 72 }
 73
 74 /**
 75 Private inner class to handle the change events
 76 that are generated when the slider is moved.
 77 */
 78
 79 private class SliderListener implements ChangeListener
 80 {
 81 public void stateChanged(ChangeEvent e)
 82 {
 83 double fahrenheit, celsius;
 84
 85 // Get the slider value.
 86 celsius = slider.getValue();
 87
 88 // Convert the value to Fahrenheit.
 89 fahrenheit = (9.0 / 5.0) * celsius + 32.0;
 90
 91 // Store the celsius temp in its display field.
 92 celsiusTemp.setText(Double.toString(celsius));

M24_GADD7961_04_SE_C24.indd 55 2/12/18 3:29 PM

24-56	 Chapter 24    Advanced Swing GUI Applications

 93
 94 // Store the Fahrenheit temp in its display field.
 95 fahrenheitTemp.setText(String.format("%.1f", fahrenheit));
 96 }
 97 }
 98
 99 /*
100 The main method creates an instance of the
101 class, which displays a window with a slider.
102 */
103
104 public static void main(String[] args)
105 {
106 new TempConverter();
107 }
108 }

 Checkpoint
 www.myprogramminglab.com

24.29	 What type of event does a JSlider generate when its slider knob is moved?

24.30	 What JSlider methods do you use to perform each of these operations?

a)	 Establish the spacing of major tick marks.
b)	 Establish the spacing of minor tick marks.
c)	 Cause tick marks to be displayed.
d)	 Cause labels to be displayed.

24.11	Look and Feel

CONCEPT:	 A GUI application’s appearance is determined by its look and feel. Java
allows you to select an application’s look and feel.

Most operating systems’ GUIs have their own unique appearance and style conventions. For
example, if a Windows user switches to a Macintosh, UNIX, or Linux system, the first thing
he or she is likely to notice is the difference in the way the GUIs on each system appear. The
appearance of a particular system’s GUI is known as its look and feel.

Java allows you to select the look and feel of a GUI application. The default look and feel
for Java is called Ocean. This is the look and feel that you have seen in all of the GUI appli-
cations that we have written in this text. Some of the other look and feel choices are Metal,
Motif, and Windows. Metal was the default look and feel for previous versions of Java.
Motif is similar to a UNIX look and feel. Windows is the look and feel of the Windows
operating system. Figure 24-32 shows how the TempConverterWindow class window, pre-
sented earlier in this chapter, appears in each of these looks and feels.

M24_GADD7961_04_SE_C24.indd 56 2/12/18 3:29 PM

	 24.11  Look and Feel	 24-57

NOTE:  Ocean is actually a special theme of the Metal look and feel.

NOTE:  Currently the Windows look and feel is available only on computers running the
Microsoft Windows operating system.

To change an application’s look and feel, you call the UIManager class’s static setLookAndFeel
method. Java has a class for each look and feel, and this method takes the fully qualified
class name for the desired look and feel as its argument. The class name must be passed as
a string. Table 24-1 lists the fully qualified class names for the Metal, Motif, and Windows
looks and feels.

Figure 24-32  Metal, Motif, and Windows looks and feels  (Oracle Corporate Counsel)

Metal Look and Feel Motif Look and Feel Windows Look and Feel

Table 24-1  Look and feel class names

Class Name Look and Feel

"javax.swing.plaf.metal.MetalLookAndFeel" Metal

"com.sun.java.swing.plaf.motif.MotifLookAndFeel" Motif

"com.sun.java.swing.plaf.windows.WindowsLookAndFeel" Windows

When you call the UIManager.setLookAndFeel method, any components
that have already been created need to be updated. You do this by calling the
SwingUtilities.updateComponentTreeUI method, passing a reference to the component
that you want to update as an argument.

The UIManager.setLookAndFeel method throws a number of exceptions. Specifically, it
throws ClassNotFoundException, InstantiationException, IllegalAccessException,
and UnsupportedLookAndFeelException. Unless you want to trap each of these types of
exceptions, you can simply trap exceptions of type Exception. Here is an example of code
that can be run from a JFrame object that changes its look and feel to Motif:

M24_GADD7961_04_SE_C24.indd 57 2/12/18 3:29 PM

24-58	 Chapter 24    Advanced Swing GUI Applications

try
{
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
}
catch (Exception e)
{
 JOptionPane.showMessageDialog(null, "Error setting " +
 "the look and feel.");
 System.exit(0);
}

And here is an example of code that can be run from a JFrame object that changes its look
and feel to Windows:

try
{
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
}
catch (Exception e)
{
 JOptionPane.showMessageDialog(null, "Error setting " +
 "the look and feel.");
 System.exit(0);
}

24.12 	Common Errors to Avoid
•	 Only retrieving the first selected item from a list component in which multiple

items have been selected. If multiple items have been selected in a list component,
the getSelectedValue method returns only the first selected item. Likewise, the
getSelectedIndex method returns only the index of the first selected item. You
should use the getSelectedValues or getSelectedIndices methods instead.

•	 Using 1 as the beginning index for a list or combo box. The indices for a list or combo
box start at 0, not 1.

•	 Forgetting to add a list or text area to a scroll pane. The JList and JTextArea com-
ponents do not automatically display scroll bars. You must add these components to
a scroll pane object in order for them to display scroll bars.

•	 Using the add method instead of the constructor to add a component to a scroll pane.
To add a component to a scroll pane, you must pass a reference to the component as
an argument to the JScrollPane constructor.

•	 Adding a component to a scroll pane and then adding the component (not the scroll
pane) to another container, such as a panel. If you add a component to a scroll pane
and then intend to add that same component to a panel or other container, you must
add the scroll pane instead of the component. Otherwise, the scroll bars will not appear
on the component.

M24_GADD7961_04_SE_C24.indd 58 2/12/18 3:29 PM

	 Review Questions and Exercises	 24-59

•	 Forgetting to call the setEditable method to give a combo box a text field. By default,
a combo box is the combination of a button and a list. To make it a combination of
a text field and a list, you must call the setEditable method and pass true as an
argument.

•	 Trying to open an image file of an unsupported type. Currently, an ImageIcon object
can open image files that are stored in JPEG, GIF, or PNG formats.

•	 Loading an image into an existing JLabel component and clipping part of the image.
If you have not explicitly set the preferred size of a JLabel component, it resizes itself
automatically when you load an image into it. The JFrame that encloses the JLabel
does not automatically resize, however. You must call the JFrame object’s pack method
or setPreferredSize method to resize it.

•	 Assigning the same mnemonic to more than one component. If you assign the same
mnemonic to more than one component in a window, it works only for the first com-
ponent that you assigned it to.

•	 Forgetting to add menu items to a JMenu component, and JMenu components to a
JMenuBar component. After you create a menu item, you must add it to a JMenu
component in order for it to be displayed on the menu. Likewise, JMenu components
must be added to a JMenuBar component in order to be displayed on the menu bar.

•	 Not calling the JFrame object’s setJMenuBar method to place the menu bar. To display
a menu bar, you must call the setJMenuBar method and pass it as an argument.

•	 Not grouping JRadioButtonMenuItems in a ButtonGroup object. Just like regular
radio button components, you must group radio button menu items in a button group
in order to create a mutually exclusive relationship among them.

Review Questions and Exercises

Multiple Choice and True/False
1.	 You can use this method to make a text field read-only.

a.	 setReadOnly
b.	 setChangeable
c.	 setUneditable
d.	 setEditable

2.	 A JList component generates this type of event when the user selects an item.
a.	 action event
b.	 item event
c.	 list selection event
d.	 list change event

3.	 To display a scroll bar with a JList component, you must .
a.	 do nothing; the JList automatically appears with scroll bars if necessary
b.	 add the JList component to a JScrollPane component
c.	 call the setScrollBar method
d.	 none of the above; you cannot display a scroll bar with a JList component

M24_GADD7961_04_SE_C24.indd 59 2/12/18 3:29 PM

24-60	 Chapter 24    Advanced Swing GUI Applications

4.	 This is the JList component’s default selection mode.
a.	 single selection
b.	 single interval selection
c.	 multiple selection
d.	 multiple interval selection

5.	 A list selection listener must have this method.
a.	 valueChanged
b.	 selectionChanged
c.	 actionPerformed
d.	 itemSelected

6.	 The ListSelectionListener interface is in this package.
a.	 java.awt
b.	 java.awt.event
c.	 javax.swing.event
d.	 javax.event

7.	 This JList method returns -1 if no item in the list is selected.
a.	 getSelectedValue
b.	 getSelectedItem
c.	 getSelectedIndex
d.	 getSelection

8.	 A JComboBox component generates this type of event when the user selects an item.
a.	 action event
b.	 item event
c.	 list selection event
d.	 list change event

9.	 You can pass an instance of this class to the JLabel constructor if you want to display
an image in the label.
a.	 ImageFile
b.	 ImageIcon
c.	 JLabelImage
d.	 JImageFile

10.	 This method can be used to store an image in a JLabel or a JButton component.
a.	 setImage
b.	 storeImage
c.	 getIcon
d.	 setIcon

11.	 This is text that appears in a small box when the user holds the mouse cursor over a
component.
a.	 mnemonic
b.	 instant message
c.	 tool tip
d.	 pop-up mnemonic

M24_GADD7961_04_SE_C24.indd 60 2/12/18 3:29 PM

	 Review Questions and Exercises	 24-61

12.	 This is a key that activates a component just as if the user clicked it with the mouse.
a.	 mnemonic
b.	 key activator
c.	 tool tip
d.	 click simulator

13.	 To display an open file or save file dialog box, you use this class.
a.	 JFileChooser
b.	 JOpenSaveDialog
c.	 JFileDialog
d.	 JFileOptionPane

14.	 To display a dialog box that allows the user to select a color, you use this class.
a.	 JColor
b.	 JColorDialog
c.	 JColorChooser
d.	 JColorOptionPane

15.	 You use this class to create a menu bar.
a.	 MenuBar
b.	 JMenuBar
c.	 JMenu
d.	 JBar

16.	 You use this class to create a radio button menu item.
a.	 JMenuItem
b.	 JRadioButton
c.	 JRadioButtonItem
d.	 JRadioButtonMenuItem

17.	 You use this method to place a menu bar on a JFrame.
a.	 setJMenuBar
b.	 setMenuBar
c.	 placeMenuBar
d.	 setJMenu

18.	 The setPreferredSize method accepts this as its argument(s).
a.	 a Size object
b.	 two int values
c.	 a Dimension object
d.	 one int value

19.	 Components of this class are multi-line text fields.
a.	 JMultiLineTextField
b.	 JTextArea
c.	 JTextField
d.	 JEditField

M24_GADD7961_04_SE_C24.indd 61 2/12/18 3:29 PM

24-62	 Chapter 24    Advanced Swing GUI Applications

20.	 This method is inherited from JComponent and changes the appearance of a compo-
nent’s text.
a.	 setAppearance
b.	 setTextAppearance
c.	 setFont
d.	 setText

21.	 This method sets the intervals at which major tick marks are displayed on a JSlider
component.
a.	 setMajorTickSpacing
b.	 setMajorTickIntervals
c.	 setTickSpacing
d.	 setIntervals

22.	 True or False: You can use code to change the contents of a read-only text field.

23.	 True or False: A JList component automatically appears with a line border drawn
around it.

24.	 True or False: In single interval selection mode, the user may select multiple items from
a JList component.

25.	 True or False: With an editable combo box the user may only enter a value that appears
in the component’s list.

26.	 True or False: You can store either text or an image in a JLabel object, but not both.

27.	 True or False: You can store large images as well as small ones in a JLabel component.

28.	 True or False: Mnemonics are useful for users who are good with the keyboard.

29.	 True or False: A JMenuBar object acts as a container for JMenu components.

30.	 True or False: A JMenu object cannot contain other JMenu objects.

31.	 True or False: A JTextArea component does not automatically display scroll bars.

32.	 True or False: By default, a JTextArea component does not perform line wrapping.

33.	 True or False: A JSlider component generates an action event when the slider knob
is moved.

34.	 True or False: By default, a JSlider component displays labels and tick marks.

35.	 True or False: When labels are displayed on a JSlider component, they are displayed
on the major tick marks.

Find the Error
1.	 // Create a read-only text field.

JTextField textField = new JTextField(10);

textField.setEditable(true);

2.	 // Create a black 1-pixel border around list, a JList component.

list.setBorder(Color.BLACK, 1);

3.	 // Create a JList and add it to a scroll pane.

// Assume that array already exists.

JList list = new JList(array);

JScrollPane scrollPane = new JScrollPane();

scrollPane.add(list);

M24_GADD7961_04_SE_C24.indd 62 2/12/18 3:29 PM

	 Review Questions and Exercises	 24-63

4.	 // Assume that nameBox is a combo box and is properly set up

// with a list of names to choose from.

// Get value of the selected item.

String selectedName = nameBox.getSelectedIndex();

5.	 JLabel label = new JLabel("Have a nice day!");

label.setImage(image);

6.	 // Add a menu to the menu bar.

JMenuBar menuBar = new JMenuBar(menuItem);

7.	 // Create a text area with 20 columns and 5 rows.

JTextArea textArea = new JTextArea (20, 5);

Algorithm Workbench
1.	 Give an example of code that creates a read-only text field.

2.	 Write code that creates a list with the following items: Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, and Sunday.

3.	 Write code that adds a scroll bar to the list you created in your answer to Algorithm
Workbench 2.

4.	 Assume that the variable myList references a JList component, and selection is a
String variable. Write code that assigns the selected item in the myList component
to the selection variable.

5.	 Assume that the variable myComboBox references an uneditable combo box, and
selectionIndex is an int variable. Write code that assigns the index of the selected
item in the myComboBox component to the selectionIndex variable.

6.	 Write code that stores the image in the file dog.jpg in a label.

7.	 Assume that label references an existing JLabel object. Write code that stores the
image in the file picture.gif in the label.

8.	 Write code that creates a button with the text “Open File.” Assign the O key as a mne-
monic and assign “This button opens a file” as the component’s tool tip.

9.	 Write code that displays a file open dialog box. If the user selects a file, the code should
store the file’s path and name in a String variable.

10.	 Write code that creates a text area displaying 10 rows and 15 columns. The text area
should be capable of displaying scroll bars, when necessary. It should also perform
word style line wrapping.

11.	 Write the code that creates a menu bar with one menu named File. The File menu should
have the F key assigned as a mnemonic. The File menu should have three menu items:
Open, Print, and Exit. Assign mnemonic keys of your choice to each of these items. Register
an instance of the OpenListener class as an action listener for the Open menu item, an
instance of the PrintListener class as an action listener for the Print menu item, and an
instance of the ExitListener class as an action listener for the Exit menu item. Assume
these classes have already been created.

12.	 Write code that creates a JSlider component. The component should be horizontally
oriented and its range should be 0 through 1000. Labels and tick marks should be dis-
played. Major tick marks should appear at every 100th number, and minor tick marks
should appear at every 25th number. The initial value of the slider should be set at 500.

M24_GADD7961_04_SE_C24.indd 63 2/12/18 3:29 PM

24-64	 Chapter 24    Advanced Swing GUI Applications

Short Answer
1.	 What selection mode should you select if you want the user to select a single item only

in a list?

2.	 You want to provide 20 items in a list for the user to select from. Which component
would take up less space, a JList or a JComboBox?

3.	 What is the difference between an uneditable combo box and an editable combo box?
Which one is a combo box by default?

4.	 Describe how you can store both an image and text in a JLabel component.

5.	 What is a mnemonic? How does the user use it?

6.	 What happens when the mnemonic that you assign to a component is a letter that
appears in the component’s text?

7.	 What is a tool tip? What is its purpose?

8.	 What do you do to a group of radio button menu items so that only one of them can
be selected at a time?

9.	 When a checked menu item shows a check mark next to it, what happens when the
user clicks on it?

10.	 What fonts does Java guarantee you have?

11.	 Why would a JSlider component be ideal when you want the user to enter a number,
but you want to make sure that the number is within a range?

12.	 What are the standard GUI looks and feels that are available in Java?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Scrollable Tax Calculator
Create an application that allows you to enter the amount of a purchase and then displays
the amount of sales tax on that purchase. Use a slider to adjust the tax rate between 0 percent
and 10 percent.

2. Image Viewer
Write an application that allows the user to view image files. The application should use
either a button or a menu item that displays a file chooser. When the user selects an image
file, it should be loaded and displayed.

3. Dorm and Meal Plan Calculator
A university has the following dormitories:

Allen Hall: $1,500 per semester
Pike Hall: $1,600 per semester
Farthing Hall: $1,200 per semester
University Suites: $1,800 per semester

The Image
Viewer Problem

VideoNote

M24_GADD7961_04_SE_C24.indd 64 2/12/18 3:29 PM

The university also offers the following meal plans:

7 meals per week: $560 per semester
14 meals per week: $1,095 per semester
Unlimited meals: $1,500 per semester

Create an application with two combo boxes. One should hold the names of the dormitories,
and the other should hold the meal plans. The user should select a dormitory and a meal
plan, and the application should show the total charges for the semester.

4. Skateboard Designer
The Skate Shop sells the skateboard products listed in Table 24-2.

Table 24-2  Skateboard products

Decks Truck Assemblies Wheels

The Master Thrasher $60 7.75 inch axle $35 51 mm $20

The Dictator $45 8 inch axle $40 55 mm $22

The Street King $50 8.5 inch axle $45 58 mm $24

61 mm $28

In addition, the Skate Shop sells the following miscellaneous products and services:

Grip tape: $10
Bearings: $30
Riser pads: $2
Nuts & bolts kit: $3

Create an application that allows the user to select one deck, one truck assembly, and one
wheel set from either list components or combo boxes. The application should also have a
list component that allows the user to select multiple miscellaneous products. The application
should display the subtotal, the amount of sales tax (at 6 percent), and the total of the order.

5. Shopping Cart System
Create an application that works like a shopping cart system for a bookstore. In this
chapter’s source code folder (available on the book’s companion Web site at www.pearson
.com/gaddis), you will find a file named BookPrices.txt. This file contains the names and
prices of various books, formatted in the following fashion:

I Did It Your Way, $11.95
The History of Scotland, $14.50
Learn Calculus in One Day, $29.95
Feel the Stress, $18.50

Each line in the file contains the name of a book, followed by a comma, followed by the
book’s retail price. When your application begins execution, it should read the contents of
the file and store the book titles in a list component. The user should be able to select a title
from the list and add it to a shopping cart, which is simply another list component. The
application should have buttons or menu items that allow the user to remove items from the

	 Programming Challenge	 24-65

M24_GADD7961_04_SE_C24.indd 65 2/12/18 3:29 PM

24-66	 Chapter 24    Advanced Swing GUI Applications

shopping cart, clear the shopping cart of all selections, and check out. When the user checks
out, the application should calculate and display the subtotal of all the books in the shopping
cart, the sales tax (which is 6 percent of the subtotal), and the total.

6. Cell Phone Packages
Cell Solutions, a cell phone provider, sells the following packages:

300 minutes per month: $45.00 per month
800 minutes per month: $65.00 per month
1500 minutes per month: $99.00 per month

The provider sells the following phones (a 6 percent sales tax applies to the sale of a phone):

Model 100: $29.95
Model 110: $49.95
Model 200: $99.95

Customers may also select the following options:

Voice mail: $5.00 per month
Text messaging: $10.00 per month

Write an application that displays a menu system. The menu system should allow the user
to select one package, one phone, and any of the options desired. As the user selects items
from the menu, the application should show the prices of the items selected.

7. Shade Designer
A custom window shade designer charges a base fee of $50 per shade. In addition, charges
are added for certain styles, sizes, and colors as follows:

Styles:

Regular shades: Add $0
Folding shades: Add $10
Roman shades: Add $15

Sizes:

25 inches wide: Add $0
27 inches wide: Add $2
32 inches wide: Add $4
40 inches wide: Add $6

Colors:

Natural: Add $5
Blue: Add $0
Teal: Add $0
Red: Add $0
Green: Add $0

Create an application that allows the user to select the style, size, color, and number of shades
from lists or combo boxes. The total charges should be displayed.

M24_GADD7961_04_SE_C24.indd 66 2/12/18 3:29 PM

8. Conference Registration System
Create an application that calculates the registration fees for a conference. The general
conference registration fee is $895 per person, and student registration is $495 per person.
There is also an optional opening night dinner with a keynote speech for $30 per person. In
addition, the optional preconference workshops listed in Table 24-3 are available.

Table 24-3  Optional preconference workshops

Workshop Fee

Introduction to E-commerce $295

The Future of the Web $295

Advanced Java Programming $395

Network Security $395

The application should allow the user to select the registration type, the optional opening
night dinner and keynote speech, and as many preconference workshops as desired. The
total cost should be displayed.

9. Dice Simulator
Write a GUI application that simulates a pair of dice, similar to that shown in Figure 24-33.
Each time the button is clicked, the application should roll the dice, using random numbers
to determine the value of each die. (This chapter’s source code folder contains images that
you can use to display the dice.)

Figure 24-33  Dice simulator  (Oracle Corporate Counsel)

	 Programming Challenge	 24-67

10. Card Dealer
This chapter’s source code folder contains images for a complete deck of poker cards. Write
a GUI application, similar to the one shown in Figure 24-34, that randomly selects a card
from the deck and displays it each time the user clicks the button. When a card has been
selected, it is removed from the deck and cannot be selected again. Display a message when
no more cards are left in the deck.

M24_GADD7961_04_SE_C24.indd 67 2/12/18 3:29 PM

24-68	 Chapter 24    Advanced Swing GUI Applications

11. Tic Tac Toe Simulator
Create a GUI application that simulates a game of tic tac toe. Figure 24-35 shows an example
of the application’s window. The window shown in the figure uses nine large JLabel com-
ponents to display the Xs and Os.

One approach in designing this application is to use a two-dimensional int array to simulate
the game board in memory. When the user clicks the New Game button, the application
should step through the array, storing a random number in the range of 0 through 1 in each
element. The number 0 represents the letter O, and the number 1 represents the letter X.
The JLabel components should then be updated to display the game board. The applica-
tion should display a message indicating whether player X won, player Y won, or the game
was a tie.

Figure 24-34  Card dealer  (Oracle Corporate Counsel)

Figure 24-35  The Tic Tac Toe application  (Oracle Corporate Counsel)

M24_GADD7961_04_SE_C24.indd 68 2/12/18 3:29 PM

