
25-1

TOPICS

Applets and More
C

H
A

P
T

E
R

25

	 25.1	 Introduction to Applets
	 25.2	 A Brief Introduction to HTML
	 25.3	 Creating Applets with Swing
	 25.4	 Using AWT for Portability
	 25.5	 Drawing Shapes

	 25.6	 Handling Mouse Events
	 25.7	 Timer Objects
	 25.8	 Playing Audio
	 25.9	 Common Errors to Avoid

25.1	 Introduction to Applets

CONCEPT:	 An applet is a Java program that is associated with a Web page and is
executed in a Web browser as part of that Web page.

Recall from Chapter 1 that there are two types of programs you can create with Java: appli-
cations and applets. An application is a stand-alone program that runs on your computer.
So far in this text, we have concentrated exclusively on writing applications.

Applets are Java programs that are usually part of a Web site. If a user opens the Web site
with a Java-enabled browser, the applet is executed inside the browser window. It appears
to the user that the applet is part of the Web site. This is how it works: Applets are stored on
a Web server along with the site’s Web pages. When a user accesses a Web page on a server
with his or her browser, any applets associated with the Web page are transmitted over the
Internet from the server to the user’s system. This is illustrated in Figure 25-1. Once the
applets are transmitted, the user’s system executes them.

Applets are important because they can be used to extend the capabilities of a Web page.
Web pages are normally written in Hypertext Markup Language (HTML). HTML is limited,
however, because it merely describes the content and layout of a Web page, and creates links

NOTE:  Java applets are an older technology, and Oracle has announced that beginning
with Java 9, the browser plug-in needed to support Java applets has been discontinued.
This is a legacy chapter from the book, and is provided for students and instructors making
the transition from applets to other technologies. As you read this chapter, keep in mind
that newer technologies exist as alternatives to applets.

M25_GADD7961_04_SE_C25.indd 1 2/12/18 3:29 PM

25-2	 Chapter 25    Applets and More

Figure 25-2 shows an example of a Web page that has an applet. In the figure, the Web page
is being viewed with Internet Explorer. This Web page briefly explains the Fahrenheit and
Celsius temperature scales. The area with the text boxes and the button at the bottom of the
page is generated by an applet. To see a Fahrenheit temperature converted to Celsius, the
user can enter the Fahrenheit temperature into the top text box and click the Convert button.
The Celsius temperature will be displayed in the read-only text box.

Figure 25-1  Applets are transmitted along with Web pages

Applet
Code Web

Page

Web Server User with a Web browser

Figure 25-2  A Web page with an applet  (Microsoft Corporation)

This part of the Web
page is generated by
an applet.

An applet does not have to be on a Web server to be executed. The Web page shown
in Figure 25-2 is in the source code folder Chapter 19\TempConverter. Open the
TempConverter.html file in your Web browser to try it. Later in this chapter, we will
take a closer look at this Web page and its applet.

to other files and Web pages. HTML does not have sophisticated abilities such as perform-
ing math calculations and interacting with the user. A programmer can write a Java applet
to perform these types of operations and associate it with a Web page. When someone visits
the Web page, the applet is downloaded to the visitor’s browser and executed.

M25_GADD7961_04_SE_C25.indd 2 2/12/18 3:29 PM

	 25.2  A Brief Introduction to HTML	 25-3

Most Web browsers have a special version of the JVM for running applets. For security pur-
poses, this version of the JVM greatly restricts what an applet can do. Here is a summary of
the restrictions placed on applets:

•	 Applets cannot delete files, read the contents of files, or create files on the user’s system.
•	 Applets cannot run any other program on the user’s system.
•	 Applets cannot execute operating system procedures on the user’s system.
•	 Applets cannot retrieve information about the user’s system, or the user’s identity.
•	 Applets cannot make network connections with any system except the server from

which the applet was transmitted.
•	 If an applet displays a window, it will automatically have a message such as “Warn-

ing: Applet Window” displayed in it. This lets the user know that the window was not
displayed by an application on his or her system.

These restrictions might seem severe, but they are necessary to prevent malicious code from
attacking or spying on unsuspecting users. If an applet attempts to violate one of these
restrictions, an exception is thrown.

 Checkpoint
 www.myprogramminglab.com

25.1	 How is an applet that is associated with a Web page executed on a user’s system?

25.2	 Why do applets run in a restricted environment?

25.2	 A Brief Introduction to HTML

CONCEPT:	 When creating a Web page, you use Hypertext Markup Language
(HTML) to create a file that can be read and processed by a Web
browser.

Hypertext Markup Language (HTML) is the language that Web pages are written in.
Although it is beyond the scope of this text to teach you everything about HTML, this
section will give you enough of the fundamentals so that you can write simple Web pages.
You will need to know a little about HTML in order to run Java applets. If you are already
familiar with HTML, this section is optional.

Before we continue, let’s look at the meanings of the terms hypertext and markup language.

Hypertext
Web pages can contain regular text and hypertext, which are both displayed in the browser
window. In addition, hypertext can contain a link to another Web page, or perhaps another
location in the same Web page. When the user clicks on the hypertext, it loads the Web page
or the location that the hypertext is linked to.

M25_GADD7961_04_SE_C25.indd 3 2/12/18 3:29 PM

25-4	 Chapter 25    Applets and More

Markup Language
Although HTML is called a language, it is not a programming language like Java. Instead,
HTML is a markup language. It allows you to “mark up” a text file by inserting special
instructions. These instructions tell the browser how to format the text and create any
hypertext links.

To make a Web page, you create a text file that contains HTML instructions, which
are known as tags, as well as the text that should be displayed on the Web page. The
resulting file is known as an HTML document, and it is usually saved with the .html
file name extension. When a Web browser reads the HTML document, the tags instruct
it how to format the text, where to place images, what to do when the user clicks on a
link, and more.

Most HTML tags come in pairs. The first is known as the opening tag and the second is
known as the closing tag. The general format of a simple tag is as follows:

<tag_name>
Text
</tag_name>

In this general format, tag_name is the name of the tag. The opening tag is <tag_name>
and the closing tag is </tag_name>. Both the opening and closing tags are enclosed in angle
brackets (< >). Notice that in the closing tag, the tag name is preceded by a forward slash
(/). The Text that appears between the opening and closing tags is text that is formatted or
modified by the tags.

Document Structure Tags
Some of the HTML tags are used to establish the structure of an HTML document. The
first of the structure tags that you should learn is the <html></html> tag. This tag marks
the beginning and ending of an HTML document. Everything that appears between
these tags, including other tags, is the content of the Web page. When you are writing
an HTML document, place an <html> tag at the very beginning, and an </html> tag
at the very end.

The next tag is <head></head>. Everything that appears between <head> and </head>
is considered part of the document head. The document head is a section of the HTML
file that contains information about the document. For example, key words that search
engines use to identify a document are often placed in the document’s head. The only
thing that we will use the document head for is to display a title in the Web browser’s
title bar. You do this with the <title></title> tag. Any text that you place between
<title> and </title> becomes the title of the page and is displayed in the browser’s
title bar. Code Listing 25-1 shows the contents of an HTML document with the title
“My First Web Page”.

Notice that the <title></title> tag is inside of the <head></head> tag. The only output
displayed by this Web page is the title. Figure 25-3 shows how this Web page appears when
opened in a browser.

M25_GADD7961_04_SE_C25.indd 4 2/12/18 3:29 PM

	 25.2  A Brief Introduction to HTML	 25-5

After the document head comes the document body, which is enclosed in the <body></body>
tag. The document body contains all of the tags and text that produce output in the browser
window. Code Listing 25-2 shows an HTML document with text placed in its body. Figure
25-4 shows the document when opened in a browser.

Figure 25-3  Web page with a title only  (Microsoft Corporation)

Code Listing 25-1   (BasicWebPage1.html)

<html>
<head>
 <title>My First Web Page</title>
</head>
</html>

Code Listing 25-2   (BasicWebPage2.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 There are two types of programs you can create with Java: applications
 and applets. An application is a stand-alone program that runs on your
 computer. Applets are Java programs that are usually part of a Web site.
 They are stored on a Web server along with the site's Web pages. When a
 remote user accesses a Web page with his or her browser, any applets
 associated with the Web page are transmitted over the Internet from the
 server to the remote user's system.
</body>
</html>

M25_GADD7961_04_SE_C25.indd 5 2/12/18 3:29 PM

25-6	 Chapter 25    Applets and More

Text Formatting Tags
The text displayed in the Web page in Figure 25-4 is unformatted, which means it appears
as plain text. There are many HTML tags that you can use to change the appearance of text.
For example, there are six different header tags that you can use to format text as a head-
ing of some type. The <h1></h1> tag creates a level one header. A level one header appears
in boldface, and is much larger than regular text. The <h2></h2> tag creates a level two
header. A level two header also appears in boldface, but is smaller than a level one header.
This pattern continues with the <h3></h3>, <h4></h4>, <h5></h5>, and <h6></h6> tags.
The higher a header tag’s level number is, the smaller the text that it formats appears. For
example, look at the following HTML:

<h1>This is an h1 Header</h1>
<h2>This is an h2 Header</h2>
<h3>This is an h3 Header</h3>
<h4>This is an h4 Header</h4>
<h5>This is an h5 Header</h5>
<h6>This is an h6 Header</h6>
This is regular unformatted text.

When this appears in the body of an HTML document, it produces the Web page shown in
Figure 25-5.

You can use the <center></center> tag to center a line of text in the browser window. To
demonstrate, we will add the following line to the document that was previously shown in
Code Listing 25-2:

<center><h1>Java</h1></center>

Figure 25-4  Web page produced by BasicWebPage2.html  (Microsoft Corporation)

M25_GADD7961_04_SE_C25.indd 6 2/12/18 3:29 PM

	 25.2  A Brief Introduction to HTML	 25-7

This will cause the word “Java” to appear centered and as a level one header. The modified
document is shown in Code Listing 25-3, and the Web page it produces is shown in
Figure 25-6.

Figure 25-5  Header levels  (Microsoft Corporation)

Code Listing 25-3   (BasicWebPage3.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 <center>
 <h1>Java</h1>
 </center>
 There are two types of programs you can create with Java: applications
 and applets. An application is a stand-alone program that runs
 on your computer. Applets are Java programs that are usually
 part of a Web site. They are stored on a Web server along with
 the site's Web pages. When a remote user accesses a Web page
 with his or her browser, any applets associated with the Web
 page are transmitted over the Internet from the server to the
 remote user's system.
</body>
</html>

M25_GADD7961_04_SE_C25.indd 7 2/12/18 3:29 PM

25-8	 Chapter 25    Applets and More

Notice that in the HTML document, the word “Java” is enclosed in two sets of tags: the
<center> tags and the <h1> tags. It doesn’t matter which set of tags is used first. If we had
written the line as follows, we would have gotten the same result:

<h1><center>Java</center></h1>

You can display text in boldface by using the tag, and in italics by using the
<i></i> tag. For example, the following will cause the text “Hello World” to be displayed
in boldface:

Hello World

The following will cause “Hello World” to be displayed in italics:

<i>Hello World</i>

The following will display “Hello World” in boldface and italics:

<i>Hello World</i>

Creating Breaks in Text
We will look at three HTML tags that are used to create breaks in a document’s text. These
three tags are unique from the ones we previously studied because they do not occur in pairs.
When you use one of these tags, you only insert an opening tag.

The
 tag causes a line break to appear at the point in the text where it is inserted. It
is often necessary to insert
 tags in an HTML document because the browser usually
ignores the newline characters that are created when you press the Enter key. For example,
if the following line appears in the body of an HTML document, it will cause the output
shown in Figure 25-7.

First line
Second line
Third line

Figure 25-6  Web page produced by BasicWebPage3.html  (Microsoft Corporation)

M25_GADD7961_04_SE_C25.indd 8 2/12/18 3:29 PM

	 25.2  A Brief Introduction to HTML	 25-9

The <p /> tag causes a paragraph break to appear at the point in the text where it is inserted.
A paragraph break typically inserts more space into the text than a line break. For example,
if the following line appears in the body of an HTML document, it will cause the output
shown in Figure 25-8.

First paragraph<p />Second paragraph<p />Third paragraph

Figure 25-7  Line breaks in an HTML document  (Microsoft Corporation)

Figure 25-8  Paragraph breaks in an HTML document  (Microsoft Corporation)

The <hr /> tag causes a horizontal rule to appear at the point in the text where it is inserted.
A horizontal rule is a thin, horizontal line that is drawn across the Web page. For example,
if the following text appears in the body of an HTML document, it will cause the output
shown in Figure 25-9.

This is the first line of text.
<hr />
This is the second line of text.
<hr />
This is the third line of text.

M25_GADD7961_04_SE_C25.indd 9 2/12/18 3:29 PM

25-10	 Chapter 25    Applets and More

The HTML document shown in Code Listing 25-4 demonstrates each of the tags we have
discussed. The Web page it produces is shown in Figure 25-10.

Figure 25-9  Horizontal rules in a Web page  (Microsoft Corporation)

Code Listing 25-4   (BasicWebPage4.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 <center>
 <h1>Java</h1>
 </center>
 There are two types of programs you can create with Java: applications
 and applets.
 <p />
 Applications

 An <i>application</i> is a stand-alone program that runs on
 your computer.
 <p />
 Applets

 <i>Applets</i> are Java programs that are usually part of a
 Web site. They are stored on a Web server along with the site's
 Web pages. When a remote user accesses a Web page with his or
 her browser, any applets associated with the Web page are
 transmitted over the Internet from the server to the remote
 user's system.
 <hr />
</body>
</html>

M25_GADD7961_04_SE_C25.indd 10 2/12/18 3:29 PM

	 25.2  A Brief Introduction to HTML	 25-11

Inserting Links
As previously mentioned, a link is some element in a Web page that can be clicked on by the
user. When the user clicks the link, another Web page is displayed, or some sort of action
is initiated. We now look at how to insert a simple link that causes another Web page to be
displayed. The tag that is used to insert a link has the following general format:

Text

The Text that appears between the opening and closing tags is the text that will be displayed
in the Web page. When the user clicks on this text, the Web page that is located at Address
will be displayed in the browser. This address is often referred to as a uniform resource
locator (URL). Notice that the address is enclosed in quotation marks. Here is an example:

Click here to go to the
textbook's web site.

The HTML document shown in Code Listing 25-5 uses this link, and Figure 25-11 shows
how the page appears in the browser.

Figure 25-10  Web page produced by BasicWebPage4.html  (Microsoft Corporation)

Code Listing 25-5   (LinkDemo.html)

<html>
<head>
 <title>Link Demonstration</title>
</head>
<body>
 This demonstrates a link.

 �Click here to go to the textbook's

web site.
</body>
</html>

M25_GADD7961_04_SE_C25.indd 11 2/12/18 3:29 PM

25-12	 Chapter 25    Applets and More

The text that is displayed by a link is usually highlighted in some way to let the user know
that it is not ordinary text. In Figure 25-11, the link text is underlined. When the user clicks
on this text, the browser displays the Web page at www.aw.com/gaddis

Figure 25-11  Web page produced by LinkDemo.html  (Microsoft Corporation)

 Checkpoint
 www.myprogramminglab.com

25.3	 What tag marks the beginning and end of an HTML document?

25.4	 What tag marks the beginning and end of an HTML document’s head section?

25.5	 What statement would you use in an HTML document to display the text “My
Web Page” in the browser’s title bar? What section of the HTML document would
this statement be written in?

25.6	 What tag marks the beginning and end of an HTML document’s body section?

25.7	 What statement would you write in an HTML document to display the text
“Student Roster” as a level one header?

25.8	 What statement would you write in an HTML document to display the text “My
Resume” in bold and centered on the page?

25.9	 What statement would you write in an HTML document to display the text “Hello
World” in bold and italic?

25.10	 What tag causes a line break? What tag causes a paragraph break? What tag
displays a horizontal rule?

25.11	 Suppose you wanted to display the text “Click Here” as a link to the Web site
http://java.sun.com. What statement would you write to create the text?

25.3	 Creating Applets with Swing

CONCEPT:	 You extend a class from JApplet to create an applet, just as you extend a
class from JFrame to create a GUI application.

By now you know almost everything necessary to create an applet. That is because applets
are very similar to GUI applications. You can think of an applet as a GUI application that
runs under the control of a Web browser. Instead of displaying its own window, an applet

M25_GADD7961_04_SE_C25.indd 12 2/12/18 3:29 PM

	 25.3  Creating Applets with Swing	 25-13

appears in the browser’s window. The differences between GUI application code and applet
code are summarized here:

•	 A GUI application class inherits from JFrame. An applet class inherits from JApplet.
The JApplet class is part of the javax.swing package.

•	 A GUI application class has a constructor that creates other components and sets up
the GUI. An applet class does not normally have a constructor. Instead, it has a method
named init that performs the same operations as a constructor. The init method
accepts no arguments and has a void return type.

•	 The following methods, which are commonly called in a GUI application’s constructor,
are not called in an applet:

setTitle

setSize

setDefaultCloseOperation

pack

setVisible

The methods listed here are used in a GUI application to affect the application’s window in
some way. They are not usually applicable to an applet because the applet does not have a
window of its own.

•	 There is no static main method needed to create an instance of the applet class. The
browser creates an instance of the class automatically.

Let’s look at a simple applet. Code Listing 25-6 shows an applet that displays a label.

Creating an
Applet

VideoNote

Code Listing 25-6   (SimpleApplet.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This is a simple applet.
 6 */
 7
 8 public class SimpleApplet extends JApplet
 9 {
10 /**
11 The init method sets up the applet, much
12 like a constructor.
13 */
14
15 public void init()
16 {
17 // Create a label.
18 JLabel label =
19 new JLabel("This is my very first applet.");
20

M25_GADD7961_04_SE_C25.indd 13 2/12/18 3:29 PM

25-14	 Chapter 25    Applets and More

This code is very much like a regular GUI application. Although this class extends JApplet
instead of JFrame, you still add components to the content pane and use layout managers
in the same way.

Running an Applet
The process of running an applet is different from that of running an application. To run
an applet, you create an HTML document with an applet tag, which has the following
general format:

<applet code="Filename.class" width=Wide height=High></applet>

In the general format, Filename.class is the name of the applet’s .class file. This is the
file that contains the compiled byte code. Note that you do not specify the .java file, which
contains the Java source code. You can optionally specify a path along with the file name.
If you specify only the file name, it is assumed that the file is in the same directory as the
HTML document. Wide is the width of the applet in pixels, and High is the height of the
applet in pixels. When a browser processes an applet tag, it loads specified byte code and
executes it in an area that is the size specified by the Wide and High values.

The HTML document shown in Code Listing 25-7 uses an applet tag to load the applet
shown in Code Listing 25-6. This document specifies that the applet should be displayed in
an area that is 200 pixels wide by 50 pixels high. Figure 25-12 shows this document when
it is displayed in a Web browser.

Code Listing 25-7   (SimpleApplet.html)

<html>
<head>
 <title>A Simple Applet</title>
</head>
<body>
 <applet code="SimpleApplet.class" width="200" height="50">
 </applet>
</body>
</html>

21 // Set the layout manager.
22 setLayout(new FlowLayout());
23
24 // Add the label to the content pane.
25 add(label);
26 }
27 }

M25_GADD7961_04_SE_C25.indd 14 2/12/18 3:29 PM

	 25.3  Creating Applets with Swing	 25-15

Running an Applet with appletviewer
The Sun JDK comes with an applet viewer program that loads and executes an applet
without the need for a Web browser. This program can be run from a command prompt
with the appletviewer command. When you run the program, you specify the name of an
HTML document as a command line argument. For example, the following command passes
SimpleApplet.html as the command line argument:

appletviewer SimpleApplet.html

This command executes any applet that is referenced by an applet tag in the file SimpleApplet.
html. The window shown in Figure 25-14 will be displayed.

Figure 25-12  The Web page produced by SimpleApplet.html  (Microsoft Corporation)

Figure 25-13  Security warning in Internet Explorer  (Microsoft Corporation)

NOTE:  When you load a Web page that uses an applet into your browser, you will most
likely get a security warning. For example, Figure 25-13 shows the warning you get from
Internet Explorer. To run the applet, click the warning message and then select Allow
Blocked Content . . . from the pop-up menu that appears.

M25_GADD7961_04_SE_C25.indd 15 2/12/18 3:29 PM

25-16	 Chapter 25    Applets and More

Handling Events in an Applet
In an applet, events are handled with event listeners exactly as they are in GUI applica-
tions. To demonstrate, we will examine the TempConverter class, which is shown in Code
Listing 25-8. This class is the applet displayed in the Web page we examined at the begin-
ning of this chapter. It has a text field where the user can enter a Fahrenheit temperature
and a Convert button that converts the temperature to Celsius and displays it in a read-
only text field. The temperature conversion is performed in an action listener class that
handles the button’s action events.

Figure 25-14  Applet executed by appletviewer  (Oracle Corporate Counsel)

Code Listing 25-8   (TempConverter.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The TempConverter class is an applet that converts
 7 Fahrenheit temperatures to Celsius.
 8 */
 9
 10 public class TempConverter extends JApplet
 11 {
 12 private JPanel fPanel; // To hold a text field
 13 private JPanel cPanel; // To hold a text field
 14 private JPanel buttonPanel; // To hold a button
 15 private JTextField fahrenheit; // Fahrenheit temperature
 16 private JTextField celsius; // Celsius temperature
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Build the panels.
 25 buildFpanel();

NOTE:  The applet viewer does not display any output generated by text or tags in the
HTML document. It only executes applets. If the applet viewer opens an HTML docu-
ment with more than one applet tag, it will execute each applet in a separate window.

M25_GADD7961_04_SE_C25.indd 16 2/12/18 3:29 PM

	 25.3  Creating Applets with Swing	 25-17

 26 buildCpanel();
 27 buildButtonPanel();
 28
 29 // Create a layout manager.
 30 setLayout(new GridLayout(3, 1));
 31
 32 // Add the panels to the content pane.
 33 add(fPanel);
 34 add(cPanel);
 35 add(buttonPanel);
 36 }
 37
 38 /**
 39 The buildFpanel method creates a panel with a text
 40 field in which the user can enter a Fahrenheit
 41 temperature.
 42 */
 43
 44 private void buildFpanel()
 45 {
 46 // Create the panel.
 47 fPanel = new JPanel();
 48
 49 // Create a label to display a message.
 50 JLabel message1 =
 51 new JLabel("Fahrenheit Temperature:");
 52
 53 // Create a text field for the Fahrenheit temp.
 54 fahrenheit = new JTextField(10);
 55
 56 // Create a layout manager for the panel.
 57 fPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 58
 59 // Add the label and text field to the panel.
 60 fPanel.add(message1);
 61 fPanel.add(fahrenheit);
 62 }
 63
 64 /**
 65 The buildCpanel method creates a panel that
 66 displays the Celsius temperature in a
 67 read-only text field.
 68 */
 69
 70 private void buildCpanel()
 71 {
 72 // Create the panel.
 73 cPanel = new JPanel();

M25_GADD7961_04_SE_C25.indd 17 2/12/18 3:29 PM

25-18	 Chapter 25    Applets and More

 74
 75 // Create a label to display a message.
 76 JLabel message2 =
 77 new JLabel("Celsius Temperature:");
 78
 79 // Create a text field for the celsius temp.
 80 celsius = new JTextField(10);
 81
 82 // Make the text field read-only.
 83 celsius.setEditable(false);
 84
 85 // Create a layout manager for the panel.
 86 cPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 87
 88 // Add the label and text field to the panel.
 89 cPanel.add(message2);
 90 cPanel.add(celsius);
 91 }
 92
 93 /**
 94 The buildButtonPanel method creates a panel with
 95 a button that converts the Fahrenheit temperature
 96 to Celsius.
 97 */
 98
 99 private void buildButtonPanel()
100 {
101 // Create the panel.
102 buttonPanel = new JPanel();
103
104 // Create a button with the text "Convert".
105 JButton convButton = new JButton("Convert");
106
107 // Add an action listener to the button.
108 convButton.addActionListener(new ButtonListener());
109
110 // Add the button to the panel.
111 buttonPanel.add(convButton);
112 }
113
114 /**
115 Private inner class that handles the action event
116 that is generated when the user clicks the convert
117 button.
118 */
119
120 private class ButtonListener implements ActionListener

M25_GADD7961_04_SE_C25.indd 18 2/12/18 3:29 PM

	 25.3  Creating Applets with Swing	 25-19

Code Listing 25-9 shows the contents of TempConverter.html, an HTML document that
uses this applet. Figure 25-15 shows the Web page produced by this document. In the figure,
the user has entered a Fahrenheit temperature and converted it to Celsius.

121 {
122 public void actionPerformed(ActionEvent e)
123 {
124 double ftemp, ctemp; // To hold the temperatures
125
126 // Get the Fahrenheit temperature and convert it
127 // to a double.
128 ftemp = Double.parseDouble(fahrenheit.getText());
129
130 // Calculate the Celsius temperature.
131 ctemp = (5.0 / 9.0) * (ftemp − 32);
132
133 // Display the Celsius temperature.
134 celsius.setText(String.format("%.1f", ctemp));
135 }
136 }
137 }

Code Listing 25-9   (TempConverter.html)

<html>
<head>
 <title>Fahrenheit and Celsius Temperatures</title>
</head>
<body>
 <center>
 <h1>Fahrenheit and Celsius Temperatures</h1>
 </center>
 Fahrenheit and Celsius are two temperature scales in use today.
 The Fahrenheit scale was developed by the German physicist
 Daniel Gabriel Fahrenheit (1686 − 1736). In the Fahrenheit scale,
 water freezes at 32 degrees and boils at 212 degrees. The
 Celsius scale was developed by Swedish astronomer Andres Celsius
 (1701 − 1744). In the Celsius scale, water freezes at 0 degrees and
 boils at 100 degrees. The Celsius to Fahrenheit conversion formula
 is:
 <p />
 <i>C</i> = (5/9) * (<i>F</i> − 32)
 <p />
 where <i>F</i> is the Fahrenheit temperature. You can also use
 this Web page to convert Fahrenheit temperatures to Celsius.
 Just enter a Fahrenheit temperature in the text box below, then

M25_GADD7961_04_SE_C25.indd 19 2/12/18 3:29 PM

25-20	 Chapter 25    Applets and More

Figure 25-15  Web page produced by TempConverter.html  (Microsoft Corporation)

 Checkpoint
 www.myprogramminglab.com

25.12	 Instead of JFrame, an applet class is extended from what class?

25.13	 Instead of a constructor, an applet class uses what method?

25.14	 Why is there no need for a static main method to create an instance of an applet
class?

25.15	 Suppose the file MyApplet.java contains the Java source code for an applet. What
tag would you write in an HTML document to run the applet in an area that is
400 pixels wide by 200 pixels high?

 click on the Convert button.
 <p />
 <applet code="TempConverter.class" width="300" height="150">
 </applet>
 <hr />
</body>
</html>

M25_GADD7961_04_SE_C25.indd 20 2/12/18 3:29 PM

	 25.4  Using AWT for Portability	 25-21

25.4	 Using AWT for Portability

CONCEPT:	 Applets that use Swing components may be incompatible with some
browsers. If you want to make sure that an applet is compatible with all
Java-enabled browsers, use AWT components instead of Swing.

Java provides two libraries of classes that GUI components may be created from. Recall from
Chapter 17 that these libraries are AWT and Swing. AWT is the original library that has been
part of Java since its earliest version. Swing is an improved library that was introduced with
Java 2. All of the GUI applications in Chapters 17 and 18, as well as the applets we have
studied so far in this chapter, use Swing classes for their components.

Some browsers, do not directly support the Swing classes in applets. These browsers require
a plug-in, which is software that extends or enhances another program, in order to run
applets that use Swing components. Fortunately, this plug-in is automatically installed on a
computer when the Sun JDK is installed. If you have installed the JDK, you should be able
to write applets that use Swing and run them with no problems.

If you are writing an applet for other people to run on their computers, however, there is
no guarantee that they will have the required plug-in. If this is the case, you should use the
AWT classes instead of the Swing classes for the components in your applet. Fortunately,
the AWT component classes are very similar to the Swing classes, so learning to use them is
simple if you already know how to use Swing.

There is a corresponding AWT class for each of the Swing classes that you have learned so
far. The names of the AWT classes are the same as those of the Swing classes, except the AWT
class names do not start with the letter J. For example, the AWT class to create a frame is
named Frame, and the AWT class to create a panel is named Panel. Table 25-1 lists several
of the AWT classes. All of these classes are in the java.awt package.

Table 25-1  Several AWT classes

AWT Class Description
Corresponding
Swing Class

Applet Used as a superclass for all applets. Unlike JApplet
objects, Applet objects do not have a content pane.

JApplet

Frame Creates a frame container that may be displayed as a
window. Unlike JFrame objects, Frame objects do not
have a content pane.

JFrame

Panel Creates a panel container. JPanel

Button Creates a button that may be clicked. JButton

Label Creates a label that displays text. JLabel

TextField Creates a single line text field, which the user may type
into.

JTextField

Checkbox Creates a check box that may be selected or deselected. JCheckBox

M25_GADD7961_04_SE_C25.indd 21 2/12/18 3:29 PM

25-22	 Chapter 25    Applets and More

The Swing classes were intentionally designed with constructors and methods that are simi-
lar to those of their AWT counterparts. In addition, events are handled in the same way for
each set of classes. This makes it easy for you to use either set of classes without learning
a completely different syntax for each. For example, Code Listing 25-10 shows a version
of the TempConverter applet that has been rewritten to use AWT components instead of
Swing components.

Code Listing 25-10   (AWTTempConverter.java)

 1 import java.applet.Applet;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The AWTTempConverter class is an applet that converts
 7 Fahrenheit temperatures to Celsius.
 8 */
 9
 10 public class AWTTempConverter extends Applet
 11 {
 12 private Panel fPanel; // To hold a text field
 13 private Panel cPanel; // To hold a text field
 14 private Panel buttonPanel; // To hold a button
 15 private TextField fahrenheit; // Fahrenheit temperature
 16 private TextField celsius; // Celsius temperature
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Build the panels.
 25 buildFpanel();
 26 buildCpanel();
 27 buildButtonPanel();
 28
 29 // Create a layout manager.
 30 setLayout(new GridLayout(3, 1));
 31
 32 // Add the panels to the applet.
 33 add(fPanel);
 34 add(cPanel);
 35 add(buttonPanel);
 36 }

M25_GADD7961_04_SE_C25.indd 22 2/12/18 3:29 PM

	 25.4  Using AWT for Portability	 25-23

 37
 38 /**
 39 The buildFpanel method creates a panel with a text
 40 field in which the user can enter a Fahrenheit
 41 temperature.
 42 */
 43
 44 private void buildFpanel()
 45 {
 46 // Create the panel.
 47 fPanel = new Panel();
 48
 49 // Create a label to display a message.
 50 Label message1 = new Label("Fahrenheit Temperature:");
 51
 52 // Create a text field for the Fahrenheit temp.
 53 fahrenheit = new TextField(10);
 54
 55 // Create a layout manager for the panel.
 56 fPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 57
 58 // Add the label and text field to the panel.
 59 fPanel.add(message1);
 60 fPanel.add(fahrenheit);
 61 }
 62
 63 /**
 64 The buildCpanel method creates a panel that
 65 displays the Celsius temperature in a
 66 read-only text field.
 67 */
 68
 69 private void buildCpanel()
 70 {
 71 // Create the panel.
 72 cPanel = new Panel();
 73
 74 // Create a label to display a message.
 75 Label message2 = new Label("Celsius Temperature:");
 76
 77 // Create a text field for the Celsius temp.
 78 celsius = new TextField(10);
 79
 80 // Make the text field read-only.
 81 celsius.setEditable(false);
 82

M25_GADD7961_04_SE_C25.indd 23 2/12/18 3:29 PM

25-24	 Chapter 25    Applets and More

 83 // Create a layout manager for the panel.
 84 cPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 85
 86 // Add the label and text field to the panel.
 87 cPanel.add(message2);
 88 cPanel.add(celsius);
 89 }
 90
 91 /**
 92 The buildButtonPanel method creates a panel with
 93 a button that converts the Fahrenheit temperature
 94 to Celsius.
 95 */
 96
 97
 98 private void buildButtonPanel()
 99 {
100 // Create the panel.
101 buttonPanel = new Panel();
102
103 // Create a button with the text "Convert".
104 Button convButton = new Button("Convert");
105
106 // Add an action listener to the button.
107 convButton.addActionListener(new ButtonListener());
108
109 // Add the button to the panel.
110 buttonPanel.add(convButton);
111 }
112
113 /**
114 Private inner class that handles the action event
115 that is generated when the user clicks the convert
116 button.
117 */
118
119 private class ButtonListener implements ActionListener
120 {
121 public void actionPerformed(ActionEvent e)
122 {
123 double ftemp, ctemp; // To hold the temperatures
124
125 // Get the Fahrenheit temperature and convert it
126 // to a double.
127 ftemp = Double.parseDouble(fahrenheit.getText());
128

M25_GADD7961_04_SE_C25.indd 24 2/12/18 3:29 PM

	 25.4  Using AWT for Portability	 25-25

The only modifications that were made were as follows:

•	 The JApplet, JPanel, JLabel, JTextField, and JButton classes were replaced with
the Applet, Panel, Label, TextField, and Button classes.

•	 The import javax.swing.*; statement was removed.

To run the applet in a browser, the APPLET tag in the TempConverter.html file must be modi-
fied to read as follows:

<applet code="AWTTempConverter.class" width=300 height=150>
</applet>

Once this change is made, the TempConverter.html file produces the Web page shown in
Figure 25-16.

129 // Calculate the Celsius temperature.
130 ctemp = (5.0 / 9.0) * (ftemp − 32);
131
132 // Display the Celsius temperature.
133 celsius.setText(String.format("%.1f", ctemp));
134 }
135 }
136 }

Figure 25-16  Web page running the AWTTempConverter applet  (Microsoft Corporation)

 Checkpoint
 www.myprogramminglab.com

25.16	 To create an applet using AWT, what class do you inherit your applet class from?

25.17	 In Swing, if an object’s class extends JFrame or JApplet, you add components
to its content pane. How do you add components to an object if its class extends
Frame or Applet?

M25_GADD7961_04_SE_C25.indd 25 2/12/18 3:29 PM

25-26	 Chapter 25    Applets and More

When you draw a line or shape on a component, you must indicate its position using X and
Y coordinates.

Graphics Objects
Each component has an internal object that inherits from the Graphics class, which is part
of the java.awt package. This object has numerous methods for drawing graphical shapes
on the surface of the component. Table 25-2 lists some of these methods.

Figure 25-17  X and Y coordinates on a 300 pixel wide by 200 pixel high component

25.5	 Drawing Shapes

CONCEPT:	 Components have an associated Graphics object that may be used to
draw lines and shapes.

In addition to displaying standard components such as buttons and labels, Java allows you
to draw lines and graphical shapes such as rectangles, ovals, and arcs. These lines and shapes
are drawn directly on components. This allows a frame or a panel to become a canvas for
your drawings. Before we examine how to draw graphics on a component, however, we
must discuss the XY coordinate system. You use the XY coordinate system to specify the
location of your graphics.

The XY Coordinate System
The location of each pixel in a component is identified with an X coordinate and a Y coor-
dinate. The coordinates are usually written in the form (X, Y). The X coordinate identifies
a pixel’s horizontal location, and the Y coordinate identifies its vertical location. The coor-
dinates of the pixel in the upper-left corner of a component are usually (0, 0). The X coor-
dinates increase from left to right, and the Y coordinates increase from top to bottom. For
example, Figure 25-17 illustrates a component such as a frame or a panel that is 300 pixels
wide by 200 pixels high. The X and Y coordinates of the pixels in each corner, as well as the
pixel in the center of the component are shown. The pixel in the center of the component
has an X coordinate of 149 and a Y component of 99.

M25_GADD7961_04_SE_C25.indd 26 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-27

Table 25-2  Some of the Graphics class methods

Method Description

void setColor(Color c) Sets the drawing color for this object to that specified
by the argument.

Color getColor() Returns the current drawing color for this object.
void drawLine(int x1, int y1,
 int x2, int y2)

Draws a line on the component starting at the coordinate
(x1, y1) and ending at the coordinate (x2, y2). The line
will be drawn in the current drawing color.

void drawRect(int x, int y,
 int width, int height)

Draws the outline of a rectangle on the component.
The upper-left corner of the rectangle will be at the
coordinate (x, y). The width parameter specifies
the rectangle’s width in pixels, and height specifies
the rectangle’s height in pixels. The rectangle will be
drawn in the current drawing color.

void fillRect(int x, int y,
 int width, int height)

Draws a filled rectangle. The parameters are the same
as those used by the drawRect method. The rectangle
will be filled with the current drawing color.

void drawOval(int x, int y,
 int width, int height)

Draws the outline of an oval on the component. The
shape and size of the oval is determined by an invisible
rectangle that encloses it. The upper-left corner of the
rectangle will be at the coordinate (x, y). The width
parameter specifies the rectangle’s width in pixels, and
height specifies the rectangle’s height in pixels. The
oval will be drawn in the current drawing color.

void fillOval(int x, int y,
 int width, int height)

Draws a filled oval. The parameters are the same as
those used by the drawOval method. The oval will be
filled in the current drawing color.

void drawArc(int x, int y,
 int width, int height,
 int startAngle,
 int arcAngle)

This method draws an arc, which is considered to be
part of an oval. The shape and size of the oval are
determined by an invisible rectangle that encloses it.
The upper-left corner of the rectangle will be at the
coordinate (x, y). The width parameter specifies the
rectangle’s width in pixels, and height specifies the
rectangle’s height in pixels. The arc begins at the angle
startAngle, and ends at the angle arcAngle. The
arc will be drawn in the current drawing color.

void fillArc(int x, int y,
 int width, int height,
 int startAngle,
 int arcAngle)

This method draws a filled arc. The parameters are the
same as those used by the drawArc method. The arc
will be filled with the current drawing color.

(table continues next page)

M25_GADD7961_04_SE_C25.indd 27 2/12/18 3:29 PM

25-28	 Chapter 25    Applets and More

Method Description
void drawPolygon(int[] xPoints,
 int[] yPoints,
 int numPoints)

This method draws the outline of a closed polygon
on the component. The xPoints array contains the
X-coordinates for each vertex, and the yPoints array
contains the Y coordinates for each vertex. The argu-
ment passed into numPoints is the number of vertices
in the polygon.

void fillPolygon(int[] xPoints,
 int[] yPoints,
 int numPoints)

This method draws a filled polygon. The parameters
are the same as those used by the drawPolygon
method. The polygon will be filled with the current
drawing color.

void drawstring(String str,
 int x, int y)

Draws the string passed into str using the current
font. The bottom left of the string is drawn at the
coordinates passed into x and y.

void setFont(Font f) Sets the current font, which is used by the drawString
method.

Table 25-2  Some of the Graphics class methods (continued)

In order to call any of these methods, you must get a reference to a component’s Graphics
object. One way to do this is to override the paint method. You can override the paint
method in any class that extends as follows:

•	 JApplet
•	 JFrame
•	 Any AWT class, including Applet and Frame

The paint method is responsible for displaying, or “painting,” a component on the screen.
This method is automatically called when the component is first displayed and is called again
any time the component needs to be redisplayed. For example, when the component is com-
pletely or partially obscured by another window, and the obscuring window is moved, then
the component’s paint method is called to redisplay it. The header for the paint method is:

public void paint(Graphics g)

Notice that the method’s argument is a Graphics object. When this method is called for a
particular component, the Graphics object that belongs to that component is automatically
passed as an argument. By overriding the paint method, you can use the Graphics object
argument to draw your own graphics on the component. For example, look at the applet
class in Code Listing 25-11.

This class inherits from JApplet, and it overrides the paint method. The Graphics object
that is passed into the paint method’s g parameter is the object that is responsible for draw-
ing the entire applet window. Notice that in line 29 the method first calls the superclass ver-
sion of the paint method, passing the object g as an argument. When overriding the paint
method, you should always call the superclass’s paint method before doing anything else.
This ensures that the component will be displayed properly on the screen.

M25_GADD7961_04_SE_C25.indd 28 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-29

Code Listing 25-11   (LineDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how lines
 6 can be drawn.
 7 */
 8
 9 public class LineDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a red line from (20, 20) to (280, 280).
32 g.setColor(Color.red);
33 g.drawLine(20, 20, 280, 280);
34
35 // Draw a blue line from (280, 20) to (20, 280).
36 g.setColor(Color.blue);
37 g.drawLine(280, 20, 20, 280);
38 }
39 }

M25_GADD7961_04_SE_C25.indd 29 2/12/18 3:29 PM

25-30	 Chapter 25    Applets and More

In line 32 the method sets the drawing color to red. In line 33 a line is drawn from the coor-
dinates (20, 20) to (280, 280). This is a diagonal line drawn from the top-left area of the
applet window to the bottom-right area. Next, in line 36, the drawing color is set to blue. In
line 37 a line is drawn from (280, 20) to (20, 280). This is also a diagonal line. It is drawn
from the top-right area of the applet window to the bottom-left area.

Figure 25-18  LineDemo applet  (Oracle Corporate Counsel)

We can use the LineDemo.html file, which is in the same folder as the applet class,
to execute the applet. The following line in the file runs the applet in an area that is
300 pixels wide by 300 pixels high:

<applet code="LineDemo.class" width=300 height=300>
</applet>

Notice that the paint method is not explicitly called by the applet. It is automatically called
when the applet first executes. As previously mentioned, it is also called any time the applet
window needs to be redisplayed.

Code Listing 25-12 shows the RectangleDemo class, an applet that draws two rectangles: one
as a black outline and one filled with red. Each rectangle is 120 pixels wide and 120 pixels
high. The file RectangleDemo.html, which is in the same folder as the applet class, executes
the applet with the following tag:

<applet code="RectangleDemo.class" width=300 height=300>
</applet>

Figure 25-18 shows the applet running in the applet viewer.

M25_GADD7961_04_SE_C25.indd 30 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-31

Figure 25-19 shows the applet running in the applet viewer.

Code Listing 25-12   (RectangleDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 rectangles can be drawn.
 7 */
 8
 9 public class RectangleDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled rectangle.
32 g.setColor(Color.black);
33 g.drawRect(20, 20, 120, 120);
34
35 // Draw a red filled rectangle.
36 g.setColor(Color.red);
37 g.fillRect(160, 160, 120, 120);
38 }
39 }

M25_GADD7961_04_SE_C25.indd 31 2/12/18 3:29 PM

25-32	 Chapter 25    Applets and More

Code Listing 25-13 shows the OvalDemo class, an applet that draws two ovals. An oval is
enclosed in an invisible rectangle that establishes the boundaries of the oval. The width and
height of the enclosing rectangle defines the shape and size of the oval. This is illustrated in
Figure 25-20.

When you call the drawOval or fillOval method, you pass the X and Y coordinates of the
enclosing rectangle’s upper-left corner, and the width and height of the enclosing rectangle
as arguments.

Code Listing 25-13   (OvalDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 ovals can be drawn.
 7 */
 8
 9 public class OvalDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {

Figure 25-19  RectangleDemo applet  (Oracle Corporate Counsel)

M25_GADD7961_04_SE_C25.indd 32 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-33

The file OvalDemo.html, which is in the same folder as the applet class, executes the
applet with the following tag:

<applet code="OvalDemo.class" width=300 height=255>
</applet>

Figure 25-20  An oval and its enclosing rectangle

17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled oval.
32 g.setColor(Color.black);
33 g.drawOval(20, 20, 120, 75);
34
35 // Draw a green filled oval.
36 g.setColor(Color.green);
37 g.fillOval(80, 160, 180, 75);
38 }
39 }

Figure 25-21 shows the applet running in the applet viewer.

M25_GADD7961_04_SE_C25.indd 33 2/12/18 3:29 PM

25-34	 Chapter 25    Applets and More

The drawArc method draws an arc, which is part of an oval. You pass the same arguments
to drawArc as you do to drawOval, plus two additional arguments: the arc’s starting angle
and ending angle. The angles are measured in degrees, with 0 degrees being at the 3 o’clock
position. For example, look at the following statement:

g.drawArc(20, 20, 100, 100, 0, 90);

This statement creates an enclosing rectangle with its upper-left corner at (20, 20) and with
a width and height of 100 pixels each. The oval constructed from this enclosing rectangle is
a circle. The arc that is drawn is the part of the oval that starts at 0 degrees and ends at 90
degrees. Figure 25-22 illustrates this arc. The dashed lines show the enclosing rectangle and
the oval. The thick black line shows the arc that will be drawn.

Figure 25-21  OvalDemo applet  (Oracle Corporate Counsel)

Figure 25-22  An arc

TIP:  To draw a circle, simply draw an oval with an enclosing rectangle that is square. In
other words, the enclosing rectangle’s width and height should be the same.

Code Listing 25-14 shows the ArcDemo class, which is an applet that draws four arcs: two
unfilled and two filled. The filled arcs are drawn with the fillArc method.

M25_GADD7961_04_SE_C25.indd 34 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-35

The file ArcDemo.html, which is in the same folder as the applet class, executes the applet
with the following tag:

<applet code="ArcDemo.class" width=300 height=220>
</applet>

Code Listing 25-14   (ArcDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 arcs can be drawn.
 7 */
 8
 9 public class ArcDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled arc from 0 degrees
32 // to 90 degrees.
33 g.setColor(Color.black);
34 g.drawArc(0, 20, 120, 120, 0, 90);
35
36 // Draw a red filled arc from 0 degrees
37 // to 90 degrees.

Figure 25-23 shows the applet running in the applet viewer.

M25_GADD7961_04_SE_C25.indd 35 2/12/18 3:29 PM

25-36	 Chapter 25    Applets and More

The drawPolygon method draws an outline of a closed polygon and the fillPolygon
method draws a closed polygon filled with the current drawing color. A polygon is con-
structed of multiple line segments that are connected. The point where two line segments
are connected is called a vertex. These methods accept two int arrays as arguments. The
first array contains the X coordinates of each vertex, and the second array contains the Y
coordinates of each vertex. The third argument is an int that specifies the number of verti-
ces, or connecting points.

For example, suppose we use the following arrays as arguments for the X and Y coordinates
of a polygon:

int[] xCoords = {60, 100, 140, 140, 100, 60, 20, 20 };
int[] yCoords = {20, 20, 60, 100, 140, 140, 100, 60 };

The first point specified by these arrays is (60, 20), the second point is (100, 20), and so
forth. There are a total of eight points specified by these arrays, and if we connect each of
these points we get the octagon shown in Figure 25-24.

38 g.setColor(Color.red);
39 g.fillArc(140, 20, 120, 120, 0, 90);
40
41 // Draw a green unfilled arc from 0 degrees
42 // to 45 degrees.
43 g.setColor(Color.green);
44 g.drawArc(0, 120, 120, 120, 0, 45);
45
46 // Draw a blue filled arc from 0 degrees
47 // to 45 degrees.
48 g.setColor(Color.blue);
49 g.fillArc(140, 120, 120, 120, 0, 45);
50 }
51 }

Figure 25-23  ArcDemo applet  (Oracle Corporate Counsel)

M25_GADD7961_04_SE_C25.indd 36 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-37

If the last point specified in the arrays is different from the first point, as in this example, then
the two points are automatically connected to close the polygon. The PolygonDemo class in
Code Listing 25-15 draws a filled polygon using these arrays as arguments.

Figure 25-24  Points of each vertex in an octagon

Code Listing 25-15   (PolygonDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how a
 6 polygon can be drawn.
 7 */
 8
 9 public class PolygonDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)

M25_GADD7961_04_SE_C25.indd 37 2/12/18 3:29 PM

25-38	 Chapter 25    Applets and More

The file PolygonDemo.html, which is in the same folder as the applet class, executes the
applet with the following tag:

<applet code="PolygonDemo.class" width=160 height=160>
</applet>

27 {
28 int[] xCoords = {60, 100, 140, 140,
29 100, 60, 20, 20 };
30 int[] yCoords = {20, 20, 60, 100,
31 140, 140, 100, 60 };
32
33 // Call the superclass paint method.
34 super.paint(g);
35
36 // Set the drawing color.
37 g.setColor(Color.red);
38
39 // Draw the polygon.
40 g.fillPolygon(xCoords, yCoords, 8);
41 }
42 }

Figure 25-25  PolygonDemo applet  (Oracle Corporate Counsel)

Figure 25-25 shows the applet running in the applet viewer.

The drawString method draws a string as a graphic. The string is specified by its first
argument, a String object. The X and Y coordinates of the lower-left point of the string
are specified by the second and third arguments. For example, assuming that g references a
Graphics object, the following statement draws the string "Hello World", starting at the
coordinates 100, 50:

g.drawstring("Hello World", 100, 50);

M25_GADD7961_04_SE_C25.indd 38 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-39

You can set the font for the string with the setFont method. This method accepts a Font
object as its argument. Here is an example:

g.setFont(new Font("Serif", Font.ITALIC, 20));

The Font class was covered in Chapter 18. Recall that the Font constructor’s arguments are
the name of a font, the font’s style, and the font’s size in points. You can combine font styles
with the + operator, as follows:

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

The GraphicStringDemo class in Code Listing 25-16 demonstrates the drawString method.
It draws the same octagon that the PolygonDemo class drew, and then draws the string
"STOP" over it to create a stop sign. The string is drawn in a bold 35-point san serif font.

Code Listing 25-16   (GraphicStringDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how a
 6 string can be drawn.
 7 */
 8
 9 public class GraphicStringDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 int[] xCoords = {60, 100, 140, 140,
29 100, 60, 20, 20 };
30 int[] yCoords = {20, 20, 60, 100,
31 140, 140, 100, 60 };
32

M25_GADD7961_04_SE_C25.indd 39 2/12/18 3:29 PM

25-40	 Chapter 25    Applets and More

The file GraphicStringDemo.html, which is in the same folder as the applet class, executes
the applet with the following tag:

<applet code="GraphicStringDemo.class" width=160 height=160>
</applet>

33 // Call the superclass paint method.
34 super.paint(g);
35
36 // Set the drawing color.
37 g.setColor(Color.red);
38
39 // Draw the polygon.
40 g.fillPolygon(xCoords, yCoords, 8);
41
42 // Set the drawing color to white.
43 g.setColor(Color.white);
44
45 // Set the font and draw "STOP".
46 g.setFont(new Font("SansSerif", Font.BOLD, 35));
47 g.drawString("STOP", 35, 95);
48 }
49 }

Figure 25-26  GraphicStringDemo applet  (Oracle Corporate Counsel)

Figure 25-26 shows the applet running in the applet viewer.

The repaint Method
As previously mentioned, you do not call a component’s paint method. It is automatically
called when the component must be redisplayed. Sometimes, however, you might want to
force the application or applet to call the paint method. You do this by calling the repaint
method, which has the following header:

public void repaint()

M25_GADD7961_04_SE_C25.indd 40 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-41

The repaint method clears the surface of the component and then calls the paint method.
You will see an applet that uses this method in a moment.

Drawing on Panels
Each of the preceding examples uses the entire JApplet window as a canvas for drawing.
Sometimes, however, you might want to confine your drawing space to a smaller region
within the window, such as a panel. To draw on a panel, you simply get a reference to the
panel’s Graphics object and then use that object’s methods to draw. The resulting graphics
are drawn only on the panel.

Getting a reference to a JPanel component’s Graphics object is similar to the tech-
nique you saw in the previous examples. Instead of overriding the JPanel object’s paint
method, however, you should override its paintComponent method. This is true not only
for JPanel objects, but also for all Swing components except JApplet and JFrame. The
paintComponent method serves for JPanel and most other Swing objects the same purpose
as the paint method: It is automatically called when the component needs to be redisplayed.
When it is called, the component’s Graphics object is passed as an argument. Here is the
method’s header:

public void paintComponent(Graphics g)

When you override this method, first you should call the superclass’s paintComponent
method to ensure that the component is properly displayed. Here is an example call to the
superclass’s version of the method:

super.paintComponent(g);

After this you can call any of the Graphics object’s methods to draw on the component. As
an example, we look at the GraphicsWindow class in Code Listing 25-17. When this applet
is run (via the GraphicsWindow.html file, which is in the same folder as the applet class), the
window shown in Figure 25-27 is displayed. A set of check boxes is displayed in a JPanel
component on the right side of the window. The white area that occupies the majority of
the window is a DrawingPanel object. The DrawingPanel class inherits from JPanel, and
its code is shown in Code Listing 25-18. When one of the check boxes is selected, a shape
appears in the DrawingPanel object. Figure 25-28 shows how the applet window appears
when all of the check boxes are selected.

Figure 25-27  GraphicsWindow applet  (Oracle Corporate Counsel)

M25_GADD7961_04_SE_C25.indd 41 2/12/18 3:29 PM

25-42	 Chapter 25    Applets and More

Figure 25-28  GraphicsWindow applet with all graphics selected  (Oracle Corporate Counsel)

Code Listing 25-17   (GraphicsWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 This class displays a drawing panel and a set of
 7 check boxes that allow the user to select shapes.
 8 The selected shapes are drawn on the drawing panel.
 9 */
10
11 public class GraphicsWindow extends JApplet
12 {
13 // Declare an array of check box components
14 private JCheckBox[] checkBoxes;
15
16 // The following titles array contains the
17 // titles of the check boxes.
18 private String[] titles = { "Line", "Rectangle",
19 "Filled Rectangle",
20 "Oval", "Filled Oval",
21 "Arc", "Filled Arc" };
22
23 // The following will reference a panel to contain
24 // the check boxes.
25 private JPanel checkBoxPanel;
26
27 // The following will reference an instance of the
28 // DrawingPanel class. This will be a panel to draw on.
29 private DrawingPanel drawingPanel;

M25_GADD7961_04_SE_C25.indd 42 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-43

30
31 /**
32 init method
33 */
34
35 public void init()
36 {
37 // Build the check box panel.
38 buildCheckBoxPanel();
39
40 // Create the drawing panel.
41 drawingPanel = new DrawingPanel(checkBoxes);
42
43 // Add the check box panel to the east region
44 // and the drawing panel to the center region.
45 add(checkBoxPanel, BorderLayout.EAST);
46 add(drawingPanel, BorderLayout.CENTER);
47 }
48
49 /**
50 The buildCheckBoxPanel method creates the array of
51 check box components and adds them to a panel.
52 */
53
54 private void buildCheckBoxPanel()
55 {
56 // Create the panel.
57 checkBoxPanel = new JPanel();
58 checkBoxPanel.setLayout(new GridLayout(7, 1));
59
60 // Create the check box array.
61 checkBoxes = new JCheckBox[7];
62
63 // Create the check boxes and add them to the panel.
64 for (int i = 0; i < checkBoxes.length; i++)
65 {
66 checkBoxes[i] = new JCheckBox(titles[i]);
67 checkBoxes[i].addItemListener(
68 new CheckBoxListener());
69 checkBoxPanel.add(checkBoxes[i]);
70 }
71 }
72
73 /**
74 A private inner class to respond to changes in the
75 state of the check boxes.
76 */
77

M25_GADD7961_04_SE_C25.indd 43 2/12/18 3:29 PM

25-44	 Chapter 25    Applets and More

Code Listing 25-18   (DrawingPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class creates a panel that example shapes are
 6 drawn on.
 7 */
 8
 9 public class DrawingPanel extends JPanel
10 {
11 // Declare a check box array.
12 private JCheckBox[] checkBoxArray;
13
14 /**
15 Constructor
16 */
17
18 public DrawingPanel(JCheckBox[] cbArray)
19 {
20 // Reference the check box array.
21 checkBoxArray = cbArray;
22
23 // Set the background color to white.
24 setBackground(Color.white);
25
26 // Set the preferred size of the panel.
27 setPreferredSize(new Dimension(300, 200));
28 }
29
30 /**
31 paintComponent method
32 @param g The panel's Graphics object.
33 */
34
35 public void paintComponent(Graphics g)

78 private class CheckBoxListener implements ItemListener
79 {
80 public void itemStateChanged(ItemEvent e)
81 {
82 drawingPanel.repaint();
83 }
84 }
85 }

M25_GADD7961_04_SE_C25.indd 44 2/12/18 3:29 PM

	 25.5  Drawing Shapes	 25-45

Let’s take a closer look at the applet’s code. First, notice in lines 14 through 21 of the
GraphicsWindow class (in Code Listing 25-17) that two of the class’s fields are array refer-
ence variables. The checkBoxes variable references an array of JCheckBox components, and
the titles variable references an array of strings. The strings in the titles array are the
titles that the check boxes will display.

36 {
37 // Call the superclass paintComponent method.
38 super.paintComponent(g);
39
40 // Draw the selected shapes.
41 if (checkBoxArray[0].isSelected())
42 {
43 g.setColor(Color.black);
44 g.drawLine(10, 10, 290, 190);
45 }
46 if (checkBoxArray[1].isSelected())
47 {
48 g.setColor(Color.black);
49 g.drawRect(20, 20, 50, 50);
50 }
51 if (checkBoxArray[2].isSelected())
52 {
53 g.setColor(Color.red);
54 g.fillRect(50, 30, 120, 120);
55 }
56 if (checkBoxArray[3].isSelected())
57 {
58 g.setColor(Color.black);
59 g.drawOval(40, 155, 75, 50);
60 }
61 if (checkBoxArray[4].isSelected())
62 {
63 g.setColor(Color.blue);
64 g.fillOval(200, 125, 75, 50);
65 }
66 if (checkBoxArray[5].isSelected())
67 {
68 g.setColor(Color.black);
69 g.drawArc(200, 40, 75, 50, 0, 90);
70 }
71 if (checkBoxArray[6].isSelected())
72 {
73 g.setColor(Color.green);
74 g.fillArc(100, 155, 75, 50, 0, 90);
75 }
76 }
77 }

M25_GADD7961_04_SE_C25.indd 45 2/12/18 3:29 PM

25-46	 Chapter 25    Applets and More

The first statement in the init method, line 38, is a call to the buildCheckBoxPanel
method, which creates a panel for the check boxes, creates the array of check boxes, adds
an item listener to each element of the array, and adds each element to the panel.

After the buildCheckBoxPanel method executes, the init method creates a DrawingPanel
object with the statement in line 41. Notice that the checkBoxes variable is passed to the
DrawingPanel constructor. The drawingPanel object needs a reference to the array so its
paintComponent method can determine which check boxes are selected and draw the cor-
responding shape.

The only times that the paintComponent method is automatically called is when the com-
ponent is initially displayed and when the component needs to be redisplayed. In order to
display a shape immediately when the user selects a check box, we need the check box item
listener to force the paintComponent method to be called. This is accomplished by the state-
ment in line 82, in the CheckBoxListener class’s itemStateChanged method. This state-
ment calls the drawingPanel object’s repaint method, which causes the drawingPanel
object’s surface to be cleared, and then causes the object’s paintComponent method to exe-
cute. Because it is in the item listener, it is executed each time the user clicks on a check box.

 Checkpoint
 www.myprogramminglab.com

25.18	 In an AWT component, or a class that extends JApplet or JFrame, if you
want to get a reference to the Graphics object, do you override the paint or
paintComponent method?

25.19	 In a JPanel object, do you override the paint or paintComponent method to get
a reference to the Graphics object?

25.20	 When are the paint and paintComponent method called?

25.21	 In the paint or paintComponent method, what should be done before anything
else?

25.22	 How do you force the paint or paintComponent method to be called?

25.23	 When using a Graphics object to draw an oval, what invisible shape is the oval
enclosed in?

25.24	 What values are contained in the two arrays that are passed to a Graphics object’s
drawPolygon method?

25.25	 What Graphics class methods do you use to perform the following tasks?
a)	 Draw a line.
b)	 Draw a filled rectangle.
c)	 Draw a filled oval.
d)	 Draw a filled arc.
e)	 Set the drawing color.
f)	 Draw a rectangle.
g)	 Draw an oval.
h)	 Draw an arc.
i)	 Draw a string.
j)	 Set the font.

M25_GADD7961_04_SE_C25.indd 46 2/12/18 3:29 PM

	 25.6  Handling Mouse Events	 25-47

Table 25-3  Methods required by the MouseListener interface

Method Description

public void mousePressed(MouseEvent e) If the mouse cursor is over the compo-
nent and the mouse button is pressed,
this method is called.

public void mouseClicked(MouseEvent e) A mouse click is defined as pressing the
mouse button and releasing it without
moving the mouse. If the mouse cursor
is over the component and the mouse is
clicked on, this method is called.

public void mouseReleased(MouseEvent e) This method is called when the mouse
button is released after it has been
pressed. The mousePressed method is
always called before this method.

public void mouseEntered(MouseEvent e) This method is called when the mouse
cursor enters the screen area belonging
to the component.

public void mouseExited(MouseEvent e) This method is called when the mouse
cursor leaves the screen area belonging
to the component.

25.6	 Handling Mouse Events

CONCEPT:	 Java allows you to create listener classes that handle events generated by
the mouse.

Handling Mouse Events
The mouse generates two types of events: mouse events and mouse motion events. To handle
mouse events you create a mouse listener class and/or a mouse motion listener class. A mouse
listener class can respond to any of the follow events:

•	 The mouse button is pressed.
•	 The mouse button is released.
•	 The mouse button is clicked (pressed, then released without moving the mouse).
•	 The mouse cursor enters a component’s screen space.
•	 The mouse cursor exits a component’s screen space.

A mouse listener class must implement the MouseListener interface, which is in the
java.awt.event package. The class must also have the methods listed in Table 25-3.

Notice that each of the methods listed in Table 25-3 accepts a MouseEvent object as its
argument. The MouseEvent object contains data about the mouse event. We will use two

M25_GADD7961_04_SE_C25.indd 47 2/12/18 3:29 PM

25-48	 Chapter 25    Applets and More

of the MouseEvent object’s methods: getX and getY. These methods return the X and Y
coordinates of the mouse cursor when the event occurs.

Once you create a mouse listener class, you can register it with a component using the
addMouseListener method, which is inherited from the Component class. The appropri-
ate methods in the mouse listener class are automatically called when their corresponding
mouse events occur.

A mouse motion listener class can respond to the following events:

•	 The mouse is dragged (the button is pressed and the mouse is moved while the button
is held down).

•	 The mouse is moved.

A mouse motion listener class must implement the MouseMotionListener interface, which is
in the java.awt.event package. The class must also have the methods listed in Table 25-4.
Notice that each of these methods also accepts a MouseEvent object as an argument.

Table 25-4  Methods required by the MouseMotionListener interface

Method Description

public void mouseDragged(MouseEvent e) The mouse is dragged when its button is
pressed and the mouse is moved while the
button is held down. This method is called
when a dragging operation begins over the
component. The mousePressed method is
always called just before this method.

public void mouseMoved(MouseEvent e) This method is called when the mouse cur-
sor is over the component and it is moved.

Once you create a mouse motion listener class, you can register it with a component using
the addMouseMotionListener method, which is inherited from the Component class. The
appropriate methods in the mouse motion listener class are automatically called when their
corresponding mouse events occur.

The MouseEvents class, shown in Code Listing 25-19, is an applet that demonstrates both a
mouse listener and a mouse motion listener. The file MouseEvents.html, which is in the same
folder as the applet class, can be used to start the applet. Figure 25-29 shows the applet run-
ning. The window displays a group of read-only text fields that represent the different mouse
and mouse motion events. When an event occurs, the corresponding text field turns yellow.
The last two text fields constantly display the mouse cursor’s X and Y coordinates. Run this
applet and experiment by clicking the mouse inside the window, dragging the mouse, moving
the mouse cursor in and out of the window, and moving the mouse cursor over the text fields.

M25_GADD7961_04_SE_C25.indd 48 2/12/18 3:29 PM

	 25.6  Handling Mouse Events	 25-49

Code Listing 25-19   (MouseEvents.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet shows the mouse events as they occur.
 7 */
 8
 9 public class MouseEvents extends JApplet
 10 {
 11 private JTextField[] mouseStates;
 12 private String[] text = {
 13 "Pressed", "Clicked", "Released",
 14 "Entered", "Exited", "Dragged",
 15 "X:", "Y:" };
 16
 17 /**
 18 init method
 19 */
 20
 21 public void init()
 22 {
 23 // Create a layout manager.
 24 setLayout(new FlowLayout());
 25
 26 // Create the array of text fields.
 27 mouseStates = new JTextField[8];
 28 for (int i = 0; i < mouseStates.length; i++)
 29 {
 30 mouseStates[i] = new JTextField(text[i], 10);
 31 mouseStates[i].setEditable(false);
 32 add(mouseStates[i]);
 33 }
 34
 35 // Add a mouse listener to this applet.
 36 addMouseListener(new MyMouseListener());
 37
 38 // Add a mouse motion listener to this applet.
 39 addMouseMotionListener(new MyMouseMotionListener());
 40 }
 41
 42 /**
 43 The clearTextFields method sets all of the text
 44 backgrounds to light gray.
 45 */

M25_GADD7961_04_SE_C25.indd 49 2/12/18 3:29 PM

25-50	 Chapter 25    Applets and More

 46
 47 public void clearTextFields()
 48 {
 49 for (int i = 0; i < 6; i++)
 50 mouseStates[i].setBackground(Color.lightGray);
 51 }
 52
 53 /**
 54 Private inner class that handles mouse events.
 55 When an event occurs, the text field for that
 56 event is given a yellow background.
 57 */
 58
 59 private class MyMouseListener
 60 implements MouseListener
 61 {
 62 public void mousePressed(MouseEvent e)
 63 {
 64 clearTextFields();
 65 mouseStates[0].setBackground(Color.yellow);
 66 }
 67
 68 public void mouseClicked(MouseEvent e)
 69 {
 70 clearTextFields();
 71 mouseStates[1].setBackground(Color.yellow);
 72 }
 73
 74 public void mouseReleased(MouseEvent e)
 75 {
 76 clearTextFields();
 77 mouseStates[2].setBackground(Color.yellow);
 78 }
 79
 80 public void mouseEntered(MouseEvent e)
 81 {
 82 clearTextFields();
 83 mouseStates[3].setBackground(Color.yellow);
 84 }
 85
 86 public void mouseExited(MouseEvent e)
 87 {
 88 clearTextFields();
 89 mouseStates[4].setBackground(Color.yellow);
 90 }
 91 }
 92

M25_GADD7961_04_SE_C25.indd 50 2/12/18 3:29 PM

	 25.6  Handling Mouse Events	 25-51

Using Adapter Classes
Many times when you handle mouse events, you will not be interested in handling every
event that the mouse generates. This is the case with the DrawBoxes applet, which handles
only mouse pressed and mouse dragged events.

This applet lets you draw rectangles by pressing the mouse button and dragging the mouse
inside the applet window. When you initially press the mouse button, the position of the

 93 /**
 94 Private inner class to handle mouse motion events.
 95 */
 96
 97 private class MyMouseMotionListener
 98 implements MouseMotionListener
 99 {
100 public void mouseDragged(MouseEvent e)
101 {
102 clearTextFields();
103 mouseStates[5].setBackground(Color.yellow);
104 }
105
106 public void mouseMoved(MouseEvent e)
107 {
108 mouseStates[6].setText("X: " + e.getX());
109 mouseStates[7].setText("Y: " + e.getY());
110 }
111 }
112 }

Figure 25-29  MouseEvents applet  (Oracle Corporate Counsel)

M25_GADD7961_04_SE_C25.indd 51 2/12/18 3:29 PM

25-52	 Chapter 25    Applets and More

mouse cursor becomes the upper-left corner of a rectangle. As you drag the mouse, the lower-
right corner of the rectangle follows the mouse cursor. When you release the mouse cursor,
the rectangle stops following the mouse. Figure 25-30 shows an example of the applet’s
window. You can run the applet with the DrawBoxes.html file, which is in the same folder
as the applet class. Code Listing 25-20 shows the code for the DrawBoxes class.

Figure 25-30  DrawBoxes applet  (Oracle Corporate Counsel)

Code Listing 25-20   (DrawBoxes.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet demonstrates how mouse events and mouse
 7 motion events can be handled. It lets the user draw
 8 boxes by dragging the mouse.
 9 */
 10
 11 public class DrawBoxes extends JApplet
 12 {
 13 private int currentX = 0; // Mouse cursor's X position
 14 private int currentY = 0; // Mouse cursor's Y position
 15 private int width = 0; // The rectangle's width

NOTE:  To draw the rectangle, you must drag the mouse cursor to the right and below
the position where you initially pressed the mouse button.

M25_GADD7961_04_SE_C25.indd 52 2/12/18 3:29 PM

	 25.6  Handling Mouse Events	 25-53

 16 private int height = 0; // The rectangle's height
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Add a mouse listener and a mouse motion listener.
 25 addMouseListener(new MyMouseListener());
 26 addMouseMotionListener(new MyMouseMotionListener());
 27 }
 28
 29 /**
 30 paint method
 31 @param g The applet's Graphics object.
 32 */
 33
 34 public void paint(Graphics g)
 35 {
 36 // Call the superclass's paint method.
 37 super.paint(g);
 38
 39 // Draw a rectangle.
 40 g.drawRect(currentX, currentY, width, height);
 41 }
 42
 43 /**
 44 Mouse listener class
 45 */
 46
 47 private class MyMouseListener
 48 implements MouseListener
 49 {
 50 public void mousePressed(MouseEvent e)
 51 {
 52 // Get the mouse cursor coordinates.
 53 currentX = e.getX();
 54 currentY = e.getY();
 55 }
 56
 57 //
 58 // The following methods are unused, but still
 59 // required by the MouseListener interface.
 60 //
 61
 62 public void mouseClicked(MouseEvent e)
 63 {

M25_GADD7961_04_SE_C25.indd 53 2/12/18 3:29 PM

25-54	 Chapter 25    Applets and More

Notice in the mouse listener and mouse motion listener classes that several of the methods
are empty. Even though the applet handles only two mouse events, the MyMouseListener
and MyMouseMotionListener classes must have all of the methods required by the interfaces
they implement. If any of these methods are omitted, a compiler error results.

 64 }
 65
 66 public void mouseReleased(MouseEvent e)
 67 {
 68 }
 69
 70 public void mouseEntered(MouseEvent e)
 71 {
 72 }
 73
 74 public void mouseExited(MouseEvent e)
 75 {
 76 }
 77 }
 78
 79 /**
 80 Mouse Motion listener class
 81 */
 82
 83 private class MyMouseMotionListener
 84 implements MouseMotionListener
 85 {
 86 public void mouseDragged(MouseEvent e)
 87 {
 88 // Calculate the size of the rectangle.
 89 width = e.getX() − currentX;
 90 height = e.getY() − currentY;
 91
 92 // Repaint the window.
 93 repaint();
 94 }
 95
 96 /**
 97 The mouseMoved method is unused, but still
 98 required by the MouseMotionListener interface.
 99 */
100
101 public void mouseMoved(MouseEvent e)
102 {
103 }
104 }
105 }

M25_GADD7961_04_SE_C25.indd 54 2/12/18 3:29 PM

	 25.6  Handling Mouse Events	 25-55

Code Listing 25-21   (DrawBoxes2.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet demonstrates how the mouse adapter
 7 classes can be used.
 8 */
 9
10 public class DrawBoxes2 extends JApplet
11 {
12 private int currentX = 0; // Mouse cursor's X position
13 private int currentY = 0; // Mouse cursor's Y position
14 private int width = 0; // The rectangle's width
15 private int height = 0; // The rectangle's height
16
17 /**
18 init method
19 */
20
21 public void init()
22 {
23 // Add a mouse listener and a mouse motion listener.
24 addMouseListener(new MyMouseListener());
25 addMouseMotionListener(new MyMouseMotionListener());
26 }

The Java API provides an alternative technique for creating these listener classes, which
eliminates the need to define empty methods for the events you are not interested in. Instead
of implementing the MouseListener or MouseMotionListener interfaces, you can extend
your classes from the MouseAdapter or MouseMotionAdapter classes. These classes imple-
ment the MouseListener and MouseMotionListener interfaces and provide empty defini-
tions for all of the required methods. When you extend a class from one of these adapter
classes, it inherits the empty methods. In your extended class, you can override the methods
you want and forget about the others. Both the MouseAdapter and MouseMotionAdapter
classes are in the java.awt.event package.

The DrawBoxes2 class shown in Code Listing 25-21 is a modification of the DrawBoxes
class previously shown. In this version, the MyMouseListener class extends MouseAdapter
and the MyMouseMotionListener class extends MouseMotionAdapter. This applet oper-
ates exactly the same as the DrawBoxes applet. The only difference is that this class does not
have the empty methods in the listener classes.

NOTE:  Java provides an adapter class for all of the interfaces in the API that have more
than one method.

M25_GADD7961_04_SE_C25.indd 55 2/12/18 3:29 PM

25-56	 Chapter 25    Applets and More

27
28 /**
29 paint method
30 @param g The applet's Graphics object.
31 */
32
33 public void paint(Graphics g)
34 {
35 // Call the superclass's paint method.
36 super.paint(g);
37
38 // Draw a rectangle.
39 g.drawRect(currentX, currentY, width, height);
40 }
41
42 /**
43 Mouse listener class
44 */
45
46 private class MyMouseListener extends MouseAdapter
47 {
48 public void mousePressed(MouseEvent e)
49 {
50 // Get the coordinates of the mouse cursor.
51 currentX = e.getX();
52 currentY = e.getY();
53 }
54 }
55
56 /**
57 Mouse Motion listener class
58 */
59
60 private class MyMouseMotionListener
61 extends MouseMotionAdapter
62 {
63 public void mouseDragged(MouseEvent e)
64 {
65 // Calculate the size of the rectangle.
66 width = e.getX() − currentX;
67 height = e.getY() − currentY;
68
69 // Repaint the window.
70 repaint();
71 }
72 }
73 }

M25_GADD7961_04_SE_C25.indd 56 2/12/18 3:29 PM

	 25.7  Timer Objects	 25-57

 Checkpoint
 www.myprogramminglab.com

25.26	 What is the difference between a mouse press event and a mouse click event?

25.27	 What interface would a listener class implement to handle a mouse click event? A
mouse press event? A mouse dragged event? A mouse release event? A mouse move
event?

25.28	 What type of object do mouse listener and mouse motion listener methods accept?
What methods do these types of objects provide for determining a mouse cursor’s
location?

25.29	 If a class implements the MouseListener interface but does not need to use all of
the methods specified by the interface, can the definitions for those methods be left
out? If not, how are these methods dealt with?

25.30	 What is an adapter class, and how does it make some programming tasks easier?

25.7	 Timer Objects

CONCEPT:	 A Timer object regularly generates action events at programmer-specified
time intervals.

Timer objects automatically generate action events at regular time intervals. This is useful
when you want a program to perform an operation at certain times or after an amount of
time has passed.

Timer objects are created from the Timer class, which is in the javax.swing package. Here
is the general format of the Timer class’s constructor:

Timer(int delay, ActionListener listener)

The argument passed into the delay parameter is the amount of time between action events,
measured in milliseconds. A millisecond is a thousandth of a second, so a delay value of
1000 causes an action event to be generated every second. The argument passed into the
listener parameter is a reference to an action listener that is to be registered with the
Timer object. If you want to add an action listener at a later time, you can pass null as this
argument, then use the Timer object’s addActionListener method to register an action
listener. Table 25-5 lists the Timer class’s methods.

An application can use a Timer object to execute code automatically at regular time intervals.
For example, a Timer object can be used to perform simple animation by moving a graphic
image across the screen by a certain amount at regular time intervals. This is demonstrated
in the BouncingBall class, shown in Code Listing 25-22. This class is an applet that displays
a bouncing ball, as shown in Figure 25-31.

M25_GADD7961_04_SE_C25.indd 57 2/12/18 3:29 PM

25-58	 Chapter 25    Applets and More

Figure 25-31  BouncingBall applet  (Oracle Corporate Counsel)

Table 25-5  Timer class methods

Method Description
void addActionListener
 (ActionListener listener)

Registers the object referenced by listener as an
action listener.

int getDelay() Returns the current time delay in milliseconds.

Boolean isRunning() Returns true if the Timer object is running. Otherwise,
it returns false.

void setDelay(int delay) Sets the time delay. The argument is the amount of the
delay in milliseconds.

void start() Starts the Timer object, which causes it to generate
action events.

void stop() Stops the Timer object, which causes it to stop generating
action events.

M25_GADD7961_04_SE_C25.indd 58 2/12/18 3:29 PM

Code Listing 25-22   (BouncingBall.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet uses a Timer object to animate
 7 a bouncing ball.
 8 */
 9
10 public class BouncingBall extends JApplet
11 {
12 private final int X = 109; // Ball's X coordinate
13 private final int WIDTH = 40; // Ball's width
14 private final int HEIGHT = 40; // Ball's height
15 private final int TIME_DELAY = 30; // Time delay
16 private final int MOVE = 20; // Pixels to move ball
17 private final int MINIMUM_Y = 50; // Min height of ball
18 private final int MAXIMUM_Y = 400; // Max height of ball
19 private int y = 400; // Ball's Y coordinate
20 private boolean goingUp = true; // Direction indicator
21 private Timer timer; // Timer object
22
23
24 /**
25 init method
26 */
27
28 public void init()
29 {
30 timer = new Timer(TIME_DELAY, new TimerListener());
31 timer.start();
32 }
33
34 /**
35 paint method
36 @param g The applet's Graphics object.
37 */
38
39 public void paint(Graphics g)
40 {
41 // Call the superclass paint method.
42 super.paint(g);
43
44 // Set the drawing color to red.
45 g.setColor(Color.red);
46

	 25.7  Timer Objects	 25-59

M25_GADD7961_04_SE_C25.indd 59 2/12/18 3:29 PM

25-60	 Chapter 25    Applets and More

The BouncingBall class’s init method creates a Timer object with the following statement
in line 30:

timer = new Timer(TIME_DELAY, new TimerListener());

This initializes the object with a time delay of 30 milliseconds (the value of TIME_DELAY) and
registers an instance of the TimerListener class as an action listener. This means that once
the object is started, every 30 milliseconds it generates an action event, causing the action
listener’s actionPerformed method to execute. The next statement in the init method, in
line 31, starts the Timer object as follows:

timer.start();

47 // Draw the ball.
48 g.fillOval(X, y, WIDTH, HEIGHT);
49 }
50
51 /**
52 Private inner class that handles the Timer object's
53 action events.
54 */
55
56 private class TimerListener implements ActionListener
57 {
58 public void actionPerformed(ActionEvent e)
59 {
60 // Update the ball's Y coordinate.
61 if (goingUp)
62 {
63 if (y > MINIMUM_Y)
64 y −= MOVE;
65 else
66 goingUp = false;
67 }
68 else
69 {
70 if (y < MAXIMUM_Y)
71 y += MOVE;
72 else
73 goingUp = true;
74 }
75
76 // Force a call to the paint method.
77 repaint();
78 }
79 }
80 }

M25_GADD7961_04_SE_C25.indd 60 2/12/18 3:29 PM

	 25.8  Playing Audio	 25-61

This causes the Timer object to commence generating action events. The TimerListener
class’s actionPerformed method calculates the new position of the bouncing ball and
repaints the screen.

 Checkpoint
 www.myprogramminglab.com

25.31	 What type of events do Timer objects generate?

25.32	 How are the time intervals between a Timer object’s action events measured?

25.33	 How do you cause a Timer object to begin generating action events?

25.34	 How to you cause a Timer object to cease generating action events?

25.8	 Playing Audio

CONCEPT:	 Sounds that have been stored in an audio file may be played from a Java
program.

Java applets can play audio that is stored in a variety of popular sound file formats. The file
formats directly supported are as follows:

•	 .aif or .aiff (Macintosh Audio File)
•	 .au (Sun Audio File)
•	 .mid or .rmi (MIDI File)
•	 .wav (Windows Wave File)

To play audio files, your computer must be equipped with a sound card and speakers. One
way to play an audio file is to use the play method, which the JApplet class inherits from
the Applet class. The version of the method that we will use is as follows:

void play(URL baseLocation, String fileName)

The argument passed to baseLocation is a URL object that specifies the location of the
file. The argument passed to fileName is the name of the file. The sound that is recorded
in the file is played one time.

When calling the play method, it is common to use either the getDocumentBase or
getCodeBase method (both of which the JApplet class inherits from the Applet class) to
get a URL object for the first argument. The getDocumentBase method returns a URL object
containing the location of the HTML file that invoked the applet. Here is an example of a
call to the play method, using a call to getDocumentBase for the first argument:

play(getDocumentBase(), "mysound.wav");

This statement will load and play the mysound.wav sound file, stored at the same location
as the HTML file that invoked the applet.

The getCodeBase method returns a URL object containing the location of the applet’s .class
file. Here is an example of its use:

play(getCodeBase(), "mysound.wav");

M25_GADD7961_04_SE_C25.indd 61 2/12/18 3:29 PM

25-62	 Chapter 25    Applets and More

This statement will load and play the mysound.wav sound file, stored at the same location
as the applet’s .class file. The AudioDemo1 folder contains an example applet that plays
a sound file using the play method.

NOTE:  If the sound file specified by the arguments to the play method cannot be found,
no sound will be played.

Using an AudioClip Object
The Applet class’s play method loads a sound file, plays it one time, and then releases it for
garbage collection. If you need to load a sound file to be played multiple times, you should
use an AudioClip object.

An AudioClip object is an object that implements the AudioClip interface. The AudioClip
interface is in the java.applet package, and it specifies the following three methods: play,
loop, and stop. The play method plays a sound one time. The loop method repeatedly
plays a sound, and the stop method causes a sound to stop playing.

The Applet class’s getAudioClip method can be used to create an AudioClip object for a
given sound file as follows:

AudioClip getAudioClip(URL baseLocation, String fileName)

The argument passed to baseLocation is a URL object that specifies the location of a sound
file, and the argument passed to fileName is the name of the file. The method returns an
AudioClip object that can be used to play the sound file.

As before, we can use the getDocumentBase or getCodeBase method to get a URL object for
the first argument. Here is an example of a statement that uses the getAudioClip method:

AudioClip clip = getAudioClip(getDocumentBase(), "mysound.wav");

This statement declares clip as an AudioClip reference variable. The object returned by
the getAudioClip method will load the mysound.wav file, stored at the same location as
the HTML file that invoked the applet. The address of the object will be assigned to clip.
The following statement can then be used to play the sound file:

clip.play();

The sound file can be played repeatedly with the following statement:

clip.loop();

Any time the sound file is being played, the following statement can be used to stop it:

clip.stop();

The AudioDemo2 class shown in Code Listing 25-23 is an applet that uses an AudioClip
object to play a sound file. The file AudioDemo2.html can be used to start the applet. Figure
25-32 shows the applet running. The Play button calls the AudioClip object’s play method,
causing the sound file to play once. The Loop button calls the loop method, causing the

M25_GADD7961_04_SE_C25.indd 62 2/12/18 3:29 PM

	 25.8  Playing Audio	 25-63

sound file to be played repeatedly. The Stop button stops the sound file from playing. The
sound file that is played is a famous NASA transmission from the Moon. NASA provides
a wealth of public domain audio, video, and image files. You can find such items by going
to www.nasa.gov, and then search the site using search terms such as “audio clips”, “video
clips”, etc.

Code Listing 25-23   (AudioDemo2.java)

 1 import java.awt.*;
 2 import java.applet.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5
 6 /**
 7 This applet uses the AudioClip class to play a
 8 sound. Sound source: NASA
 9 */
10
11 public class AudioDemo2 extends JApplet
12 {
13 private JLabel credit; // Displays NASA credit
14 private JButton playButton; // Plays the sound clip
15 private JButton loopButton; // Loops the clip
16 private JButton stopButton; // Stops the clip
17 private AudioClip sound; // Holds the sound clip
18
19 /**
20 init method
21 */
22
23 public void init()
24 {
25 // Create a layout manager.
26 setLayout(new FlowLayout());
27
28 // Make the credit label and add it.
29 credit = new JLabel("Audio source: NASA");
30 add(credit);
31
32 // Make the buttons and add them.
33 makeButtons();
34
35 // Get an AudioClip object for the sound file.
36 sound = getAudioClip(getDocumentBase(), "step.wav");
37 }
38

M25_GADD7961_04_SE_C25.indd 63 2/12/18 3:29 PM

25-64	 Chapter 25    Applets and More

39 /**
40 The makeButtons method creates the Play, Loop, and
41 Stop buttons, and adds them to the content pane.
42 */
43
44 private void makeButtons()
45 {
46 // Create the Play, Loop, and Stop buttons.
47 playButton = new JButton("Play");
48 loopButton = new JButton("Loop");
49 stopButton = new JButton("Stop");
50
51 // Register an action listener with each button.
52 playButton.addActionListener(new ButtonListener());
53 loopButton.addActionListener(new ButtonListener());
54 stopButton.addActionListener(new ButtonListener());
55
56 // Add the buttons to the content pane.
57 add(playButton);
58 add(loopButton);
59 add(stopButton);
60 }
61
62 /**
63 Private inner class that handles the action event
64 that is generated when the user clicks one of the
65 buttons.
66 */
67
68 private class ButtonListener implements ActionListener
69 {
70 public void actionPerformed(ActionEvent e)
71 {
72 // Determine which button was clicked and
73 // perform the selected action.
74 if (e.getSource() == playButton)
75 sound.play();
76 else if (e.getSource() == loopButton)
77 sound.loop();
78 else if (e.getSource() == stopButton)
79 sound.stop();
80 }
81 }
82 }

M25_GADD7961_04_SE_C25.indd 64 2/12/18 3:29 PM

	 25.8  Playing Audio	 25-65

Playing Audio in an Application
The previous examples show how to play an audio file in an applet. You can play audio in
an application as well. The process of getting a reference to an AudioClip object is different,
however, in a class that does not extend JApplet. In the Chapter 19\AudioDemo3 source
code folder you will find a Swing application named AudioFrame.java that demonstrates
how to do it. The following code segment is from the application.

43 // Create a file object for the step.wav file.
44 File file = new File("step.wav");
45
46 // Get a URI object for the audio file.
47 URI uri = file.toURI();
48
49 // Get a URL for the audio file.
50 URL url = uri.toURL();
51
52 // Get an AudioClip object for the sound
53 // file using the Applet class's static
54 // newAudioClip method.
55 sound = Applet.newAudioClip(url);

In line 44, we create a File object representing the audio file. Then, in line 47 we call the
File class’s toURI method to create a URI object representing the audio file. The URI class is
in the java.net package. (URI stands for Uniform Resource Identifier.)

Then, in line 50, we call the URI class’s toURL method to create a URL object representing the
audio file. Note that if this method cannot construct a URL it throws a checked exception—
MalformedURLException. The MalformedURLException class is in the java.net package.

Last, in line 55, we call the Applet class’s static newAudioClip method, passing the URL
object as an argument. The method returns a reference to an AudioClip object which can
be used as previously demonstrated to play the audio file.

Figure 25-32  AudioDemo2 applet  (Oracle Corporate Counsel)

M25_GADD7961_04_SE_C25.indd 65 2/12/18 3:29 PM

25-66	 Chapter 25    Applets and More

 Checkpoint
 www.myprogramminglab.com

25.35	 What Applet method can you use to play a sound file?

25.36	 What is the difference between using the Applet method asked for in Checkpoint
25.35, and using an AudioClip object to play a sound file?

25.37	 What methods does an AudioClip object have? What do they do?

25.38	 What is the difference between the Applet class’s getDocumentBase and
getCodeBase methods?

25.9	 Common Errors to Avoid
•	 Forgetting a closing tag in an HTML document. Most HTML tags have an opening

tag and a closing tag. The page will not appear properly if you forget a closing tag.
•	 Confusing the <head></head> tag with <h1></h1> or another header tag. The

<head></head> tag marks a document’s head section, whereas the <h1></h1> tag
marks a header, which is large bold text.

•	 Using X and/or Y coordinates that are outside of the component when drawing a shape.
If you use coordinates that are outside the component to draw a shape, the shape will
not appear.

•	 Not calling the superclass’s paint or paintComponent method. When you override the
paint or paintComponent method, the overriding method should call the superclass’s
version of the method before doing anything else.

•	 Overriding the paint method with a component extended from JComponent. You
should override the paint method only with AWT components, JFrame components,
or JApplet components.

•	 Not calling the repaint method to redisplay a window. When you update the data
used to draw shapes on a component, you must call the repaint method to force a
call to the paint or paintComponent method.

•	 Not providing empty definitions for the unneeded methods in a mouse listener or
mouse motion listener class. When writing mouse listeners or mouse motion listeners,
you must provide definitions for all the methods specified by the listener interfaces. To
avoid this you can write a listener as a class that inherits from an adapter class.

•	 Forgetting to start a Timer object. A Timer object does not begin generating action
events until it is started with a call to its start method.

Review Questions and Exercises
Multiple Choice and True/False
1.	 This section of an HTML document contains all of the tags and text that produce

output in the browser window.
a.	 head
b.	 content
c.	 body
d.	 output

M25_GADD7961_04_SE_C25.indd 66 2/12/18 3:29 PM

	 Review Questions and Exercises	 25-67

2.	 You place the <title></title> tag in this section of an HTML document.
a.	 head
b.	 content
c.	 body
d.	 output

3.	 Everything that appears between these tags in an HTML document is the content of
the Web page.
a.	 <content></content>
b.	 <html></html>
c.	 <head></head>
d.	 <page></page>

4.	 To create a level one header you use this tag.
a.	 <level1></level1>
b.	 <header1></header1>
c.	 <h1></h1>
d.	 <head></head>

5.	 When using Swing to write an applet, you extend the applet’s class from this class.
a.	 Applet
b.	 JApplet
c.	 JFrame
d.	 JAppletFrame

6.	 When using AWT to write an applet, you extend the applet’s class from this class.
a.	 Applet
b.	 JApplet
c.	 JFrame
d.	 JAppletFrame

7.	 This applet method is invoked instead of a constructor.
a.	 startUp
b.	 beginApplet
c.	 invoke
d.	 init

8.	 The Sun JDK comes with this program, which loads and executes an applet without
the need for a Web browser.
a.	 applettest
b.	 appletload
c.	 appletviewer
d.	 viewapplet

9.	 A class that inherits from Applet or Frame does not have one of these.
a.	 an add method
b.	 an init method
c.	 a content pane
d.	 a layout manager

M25_GADD7961_04_SE_C25.indd 67 2/12/18 3:29 PM

25-68	 Chapter 25    Applets and More

10.	 What location on a component usually has the coordinates (0, 0)?
a.	 upper-right corner
b.	 upper-left corner
c.	 center
d.	 lower-right corner

11.	 In a class that extends JApplet or JFrame you override this method to get a reference
to the Graphics object.
a.	 paint
b.	 paintComponent
c.	 getGraphics
d.	 graphics

12.	 In a class that extends JPanel you override this method to get a reference to the
Graphics object.
a.	 paint
b.	 paintComponent
c.	 getGraphics
d.	 graphics

13.	 The drawLine method is a member of this class.
a.	 JApplet
b.	 Applet
c.	 JFrame
d.	 Graphics

14.	 To force the paint method to be called to update a component’s display, you
__________.
a.	 call the paint method
b.	 call the repaint method
c.	 call the paintAgain method
d.	 do nothing; you cannot force the paint method to be called

15.	 A class that implements this interface can handle mouse dragged events.
a.	 MouseListener
b.	 ActionListener
c.	 MouseMotionListener
d.	 MouseDragListener

16.	 A class that implements this interface can handle mouse click events.
a.	 MouseListener
b.	 ActionListener
c.	 MouseMotionListener
d.	 MouseDragListener

17.	 This MouseEvent method returns the X coordinate of the mouse cursor at the moment
the mouse event is generated.
a.	 getXCoord
b.	 getMouseX
c.	 getPosition
d.	 getX

M25_GADD7961_04_SE_C25.indd 68 2/12/18 3:29 PM

	 Review Questions and Exercises	 25-69

18.	 If a class implements a standard API interface that specifies more than one method
but does not need many of the methods, this should be used instead of the interface.
a.	 your own detailed versions of the needed methods
b.	 an adapter class
c.	 a different interface
d.	 there is no other choice

19.	 A Timer object’s time delay between events is specified in this unit of time.
a.	 seconds
b.	 microseconds
c.	 milliseconds
d.	 minutes

20.	 A Timer object generates this type of event.
a.	 action events
b.	 timer events
c.	 item events
d.	 interval events

21.	 The following Applet class method returns a URL object with the location of the
HTML file that invoked the applet.
a.	 getHTMLlocation
b.	 getDocumentBase
c.	 getAppletBase
d.	 getCodeBase

22.	 The following Applet class method returns a URL object with the location of the
applet’s .class file.
a.	 getHTMLlocation
b.	 getDocumentBase
c.	 getAppletBase
d.	 getCodeBase

23.	 True or False: Applets cannot create files on the user’s system.

24.	 True or False: Applets can read files on the user’s system.

25.	 True or False: Applets cannot make network connections with any system except the
server from which the applet was transmitted.

26.	 True or False: Applets can retrieve information about the user’s system or the user’s
identity.

27.	 True or False: The <h6> tag produces larger text than the <h1> tag.

28.	 True or False: You use a static main method to create an instance of an applet class.

29.	 True or False: In a class that extends JApplet, you add components to the content
pane.

30.	 True or False: In an applet, events are handled differently than in a GUI application.

31.	 True or False: An object of the Frame class does not have a content pane.

32.	 True or False: In an overriding paint method, you should never call the superclass’s
version of the paint method.

M25_GADD7961_04_SE_C25.indd 69 2/12/18 3:29 PM

25-70	 Chapter 25    Applets and More

33.	 True or False: Once a Timer object has been started, it cannot be stopped without
shutting down the program.

34.	 True or False: The Applet class’s play method loads and plays an audio file once and
then releases the memory it occupies for garbage collection.

35.	 True or False: The loop and stop methods, for use with audio files, are part of the
Applet class.

Find the Error
Find the errors in the following code:
1.	 <applet code="MyApplet.java" width=100 height=50>

</applet>

2.	 public void paint(Graphics g)

{

 drawLine(0, 0, 100, 100);

}

3.	 // Force a call to the paint method.

paint();

4.	 public class MyPanel extends JPanel

{

 public MyPanel()

 {

 // Constructor code...

 }

 public void paint(Graphics g)

 {

 //paint method code...

 {

}

5.	 private class MyMouseListener implements MouseListener

{

 public void mouseClicked(MouseEvent e)

 {

 mouseClicks += 1;

 }

}

6.	 private class MyMouseListener implements MouseAdapter

{

 public void mouseClicked(MouseEvent e)

 {

 mouseClicks += 1;

 }

}

M25_GADD7961_04_SE_C25.indd 70 2/12/18 3:29 PM

	 Review Questions and Exercises	 25-71

Algorithm Workbench
1.	 Write the text and HTML tags necessary to display “My Home Page” as a level one

header, centered in the browser window.

2.	 You have written an applet and saved the source code in a file named MyApplet.java.
Write the HTML tag needed to execute the applet in an area that is 300 pixels wide by
200 pixels high. Assume that the compiled applet code is stored in the same directory
as the HTML document.

3.	 Look at the following GUI application class and indicate by line number the changes
that should be made to convert this to an applet using Swing:

 1 public class SimpleWindow extends JFrame

 2 {

 3 public SimpleWindow()

 4 {

 5 // Set the title.

 6 setTitle("A Simple Window");

 7

 8 // Specify what happens when the close button is clicked.

 9 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10

11 // Add a label.

12 JLabel label = new JLabel("This is a simple window.");

13 add(label);

14

15 // Pack and display the window.

16 pack();

17 setVisible(true);

18 }

19 }

4.	 Assume that g references a Graphics object. Write code that performs the following:
a.	 Draws an outline of a rectangle that is 100 pixels wide by 200 pixels high, with its

upper-left corner at (50, 75).
b.	 Draws a filled rectangle that is 300 pixels wide by 100 pixels high, with its upper-

left corner at (10, 90).
c.	 Draws a blue outline of an oval with an enclosing rectangle that is 100 pixels wide

by 50 pixels high, with its upper-left corner at (10, 25).
d.	 Draws a red line from (0, 5) to (150, 175).
e.	 Draws the string “Greetings Earthling”. The lower-left point of the string should be

at (80, 99). Use a bold, 20-point serif font.
f.	 Draws a polygon with vertices at the following points: (10, 10), (10, 25), (50, 25),

and (50, 10). What shape does this code result in?

M25_GADD7961_04_SE_C25.indd 71 2/12/18 3:29 PM

25-72	 Chapter 25    Applets and More

5.	 Rewrite the following mouse motion listener so it uses an adapter class:

private class MyMouseMotionListener implements MouseMotionListener

{

 public void mouseDragged(MouseEvent e)

 {

 }

 public void mouseMoved(MouseEvent e)

 {

 mouseMovements += 1;

 }

}

6.	 Assume that a class has an inner class named MyTimerListener that can be used to
handle the events generated by a Timer object. Write code that creates a Timer object
with a time delay of one half second. Register an instance of MyTimerListener with
the class.

Short Answer
1.	 When a user accesses a Web page on a remote server with his or her browser, and that

Web page has an applet associated with it, is the applet executed by the server or by
the user’s system?

2.	 List at least three security restrictions imposed on applets.

3.	 Why are applets sometimes necessary in Web page development?

4.	 Why isn’t it necessary to call the setVisible method to display an applet?

5.	 Why would you ever need to use the older AWT library instead of Swing to develop
an applet?

6.	 A panel is 600 pixels wide by 400 pixels high. What are the X and Y coordinates of
the pixel in the upper-left corner? The upper-right corner? The lower-left corner? The
lower-right corner? The center of the panel?

7.	 When is a component’s paint or paintComponent method called?

8.	 What is an adapter class? How does it make some programming tasks more conve-
nient? Under what circumstances does the Java API provide an adapter class?

9.	 Under what circumstances would you want to use an AudioClip object to play a sound
file, rather than the Applet class’s play method?

Programming Challenges
Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. FollowMe Applet
Write an applet that initially displays the word “Hello” in the center of a window. The word
should follow the mouse cursor when it is moved inside the window.

M25_GADD7961_04_SE_C25.indd 72 2/12/18 3:29 PM

	 Programming Challenges	 25-73

2. House Applet
Write an applet that draws the house shown on the left in Figure 25-33. When the user clicks
on the door or windows, they should close. The figure on the right shows the house with its
door and windows closed.

Figure 25-34  Eyes following the mouse cursor

The House
Applet

Problem

VideoNote

Figure 25-33  House drawing

3. WatchMe Applet
Write an applet that displays a drawing of two eyes in the center of its window. When the
mouse cursor is not inside the window, the eyes should look ahead. When the mouse cursor
is inside the window, the eyes should follow the cursor. This is illustrated in Figure 25-34.

M25_GADD7961_04_SE_C25.indd 73 2/12/18 3:29 PM

25-74	 Chapter 25    Applets and More

4. Thermometer Applet
Write an applet that displays a thermometer. The user should be able to control the tem-
perature with a slider component. When the user moves the slider, the thermometer should
show the corresponding temperature.

5. Polygon Drawer
Write an applet that lets the user click on six points. After the sixth point is clicked, the applet
should draw a polygon with a vertex at each point the user clicked.

6. GridFiller Applet
Write an applet that displays a 4 * 4 grid. When the user clicks on a square in the grid, the
applet should draw a filled circle in it. If the square already has a circle, clicking on it should
cause the circle to disappear.

7. DrinkMachine Applet
Write an applet that simulates a soft drink vending machine. The simulated machine dis-
penses the following soft drinks: cola, lemon-lime soda, grape soda, root beer, and bottled
water. These drinks cost $0.75 each to purchase.

When the applet starts, the drink machine should have a supply of 20 of each of the drinks.
The applet should have a text field where the user can enter the amount of money he or she
is giving the machine. The user can then click on a button to select a drink to dispense. The
applet should also display the amount of change it is giving back to the user. The applet
should keep track of its inventory of drinks and inform the user whether he or she has
selected a drink that is out of stock. Be sure to handle operator errors such as selecting a
drink with no money entered and selecting a drink with an inadequate amount of money
entered.

8. Stopwatch Applet
Write an applet that simulates a stopwatch. It should have a Start button and a Stop button.
When the Start button is clicked the applet should count the seconds that pass. When the
Stop button is clicked, the applet should stop counting seconds.

9. Slideshow Application
Write an application that displays a slideshow of images, one after the other, with a time
delay between each image. The user should be able to select up to 10 images for the slide
show and specify the time delay in seconds.

M25_GADD7961_04_SE_C25.indd 74 2/12/18 3:29 PM

