CST 183 Syllabus

CST 183
Principles of Computer Programming I
Instructor: Dr. Don Southwell
General Info:
Office Location: A071

Telephone: 989 686-9137

Fax: 989 686-8736

E-mail:
donaldsouthwell@delta.edu

Instructor Website: http://websites.delta.edu/donaldsouthwell/
Office Hours: See class/office schedule at : http://websites.delta.edu/donaldsouthwell/academic_schedule.htm
· Students should make appointments to see the instructor at least 24 hours in advance. Appointments take precedence over walk-in visits and are recommended.

· To effectively document questions and responses, email communications is preferred. The use of Delta’s email service is REQUIRED for sending and receiving class correspondence. Due to spam filter settings, instructor is not responsible for receiving email from other providers.

Course Description: Prerequisites: MATH LEVEL 4 and CST 173 (or CST 170), or instructor permission. Introduces programming abilities necessary for computer science. Includes control structures, subprograms, string handling, arrays, files, and use of graphical user interface components. Emphasizes object-oriented programming concepts. And use of classes. Introduces exception handling, drawing, and multithreading. (60-0)
	Outcomes and Objectives for: CST 183 Principles of Computer Programming I

Upon successful completion of this course, the student will be able to:

	Apply basic computer programming and software engineering concepts.
Objectives:

A. Define the history and attributes of chosen programming language and its relationship to other programming languages.

B. Define the value and significance of high-level programming languages compared to past software development tools.

C. Describe issues and challenges of building quality software.

D. Define and apply the general softare engineering life cycle including problem definition, design, constructing source code, compiling it, and executing object code.

Demonstrate computer literacy skills to successfully use software development environments.
Objectives:

A. Utilize an integrated development environment to create a project workspace.

B. Enter and edit source code using a text editor.

C. Manage multiple project, data, and source code files.

D. Use a compiler to check program diagnostics and correct syntax errors.

E. Deliver electronic files using online or magnetic disk storage.

F. Create document files or screen captures to demonstrate program code or output.

Design software solutions for a variety of problems.
Objectives:

A. Create a logic plan to map design of a software solution.

B. Recognize basic flowcharting symbols.

C. Graphically depict logic using flowcharting techniques.

D. Read and interpret algorithms represented in pseudocode.

E. Interpret requirements and specifications for a software problem to initiate accurate desing of a computer program.

F. Decompose a software problem statement into main tasks and subtasks using top-down design and step-wise refinement.

G. Construct program code to implement program design specifications.

Apply the basic contructs and operations of a programming language to build working programs.
Objectives:

A. Define the history and attributes of the chosen programming language and its relationship to other programming languages.

B. Contrast compiled versus interpreted code and define the behavior and value of a "virtual machine."

C. Describe the basic program format and structure of a program.

D. Perform basic user input/output using simple dialog boxes.

E. Define basic data types and variations in each data type family.

F. Define issues with numerical data type conversions.

G. Describe arithmetic operator precedence.

H. Build and evaluate arithmetic expressions using a programming language.

I. Define and utilize the Boolean data type for logical operations.

J. Describe relational operators and use them to construct logical expressions.

K. Describe logical operators (AND, OR, NOT) including their truth tables

L. Apply logical operators to construct compound logical expressions.

M. Build selection statements with appropriate if/else/switch programming constructs.

N. Define the most appropriate use of while, do/while, and for loops.

O. Build repetition statements with looping constructs.

P. Apply arrays for storing a variety of data and objects.

Q. Solve basic problems using two-dimensional arrays.

R. Effectively construct loops for arraw processing.

S. Apply string classes to perform a wide avariety of basic and advanced string manipulation.

Design modular programming solutions.
Objectives:

A. Implement programming problem sub-tasks into user-defined functions.

B. Effectively design and implement subprogram parameter input.

C. Distinguish between subprogram return type options and build subprogram solutions to match requirements.

D. Distinguish between global and local variables and define variable scope.

Define and implement programming applications that include graphical user interfaces.
Objectives:

A. Desing and implement programming solutions involving graphical user interface classes with labels, sliders, text boxes, text areas, and buttons.

B. Design and implement programming solutions involving selection graphical user interface classes including drop-down lists, check boxes, and radio buttons.

C. Describe and compare various "listener" classes and methods for implementing event listeners.

D. Construct correct event-handling methods for various user input requirements.

E. Desing graphical user interface layouts using basic layout managers.

F. Design graphical user interface layouts using interface containers.

Implement programming applications that include specialized concepts in introductory computer science.
Objectives:

A. Apply basic sorting algorithms and describe basic strategies utilized.

B. Apply searching algorithms and compare and contrast their relative efficiencies.

C. Practice various list processing algorithms for unordered and ordered lists.

Describe and apply specialized programming features.
Objectives:

A. Integrate exception-handling routines for various likely programming exceptions including number conversion, array processing, and file input/output.

B. Apply basic dynamic memory allocation of objects and arrays.

C. Describe general strategies for memory management and practice these to avoid memory leaks.

D. Implement random number processing for simple games and simulations.

E. Define simple concurrent programming concepts and apply basic features of multithreading in a programming solution.

F. Display a graphic image within a user interface.

G. Utilize basic file processing to input or output external data.

H. Access text information from a web site URL.

I. Build graphics including lines, shapes, color, and font management.

Apply object oriented programming concepts.
Objectives:

A. Interpret specificaitons for classes that are part of the programming language.

B. Utilize standard programming language classes and methods in working applications.

C. Decompose problems into the interaction of a collection of objects.

D. Recognize specific terminology related to object-oriented programming.

E. Design an abstract data type from specifications.

F. Build classes for objects including the correct variables and methods.

G. Define "set" and "get" methods necessary for a class to protect private data members.

H. Define and implement class constructors. For user-defined classes.

I. Implement user-defined methods with appropriate parameter passing.

J. Define class inheritance and the behavior of the sub-class and super-class defined using inheritance.

K. Define basic class inheritance as it relates to utilizing a programming language.

L. Define class variables and distinguish between public, protected, and private member designation.

M. Distinguish and apply method overriding and method overloading.

N. Utilize class composition to integrate multiple classes into a software solution.

Perform critical analysis to create working software solutions.
Objectives:

A. Analyze alternative solutions to a given programming problem and select the best approach.

B. Develop and implement a variety of testing strategies to verify correctness of working programs.

C. Diagnose and debug syntax, run-time, linker, and logic errors to create a working and correct software solution.

D. Document program source code for clarity and readability using accepted documentation standards including comments, indetation, and other techniques.

E. Integrate and re-use previously working program code into new software development.

F. Effectively create and import external code "packages" for storing and reusing classes.

G. Develop systematic test plans, create test cases, and test data to verify program correctness.

H. Execute tests and correct logic errors based on test results.

I. Locate on-line resources for the chosen programming language.

J. Build user-friendly computer programs for a variety of real-world problems.

K. Design and build event-driven programming solutions.

L. Deliver software solutions within given deadline requirements.

Source: https://public.delta.edu/catalog/Pages/CourseDetail.aspx?CourseID=55184
Learning Activities:

· Lecture: Part of each class is lecture based, designed around student/instructor discussion and interaction to reinforce concepts.
· Lab Activities: Part of each class will be spent doing lab activities. Some of these activities will include written work such as answering questions, developing algorithms, or coding C++ programs. Other activities will include group interactions, in-class demonstrations, and program compilation, debugging, and execution.
· Outside Assignments: Students will be given outside homework assignments (due dates to be announced) to reinforce discussion concepts and lab activities. These assignments will sometime be based on chapter questions and will also involve programming. Each of the activities will be designed to provide concept reinforcement.
· Reading Assignments: Students will be given a reading assignment each week to help prepare them for the following weeks class discussion and activities.
· Quizzes: Students will be given a short quiz each week except exam weeks. Quizzes will be worth 10 points each and be based on each weeks reading assignments.
· Exams: We will have three exams, each about 5 weeks apart.

Grading:

· Exams (2 Mid-term Exams, Final Exam)

30%

· Class Quiz (~12 quizzes – given weekly)

18%

· Programming Projects - Homework Assignments

24%

· Lab activities.

18%

· Participation (attendance)

10%

Points in each area are accumulated and converted to percent form. The final letter grade is assigned as follows:

A 93 - 100%
A- 90 - 92%

B+ 87 - 89%
B 83 - 86%
B- 80 - 82%

C+ 77 - 79%
C 73 - 76%
C- 70 - 72%

D+ 67 - 69%
D 60 - 66%

E below 60%

Withdrawals and incomplete grades will be issued pursuant to the college policy. Incompletes are not generally given except in cases where the majority of the coursework is completed with a passing grade and the circumstances are serious, verifiable, and not within the student’s control (illness, family emergency, etc.).

Texts and Other Resources: The required texts are:

· Gaddis, Tony (2013) Starting Out With JAVA - From Control Structures Through Objects, Fifth Edition.. Pearson Publishing. ISBN: 0-13-2855836
Students will be directed to or will locate other resources to meet various objectives.

Supplies: Students should/must be able to store and retrieve files during class sessions and during lab work. The student needs to provide storage media for working files and for backup files so that two copies of files are always available. Some options are a combination of:

(1) a portable mass storage device variously called usb drive, flash memory, jump drive, or thumb drive;

(2) a briefcase location through Yahoo.com or other Internet storage location;

(3) FTP to their college-provided directory;

(4) something else.

Students may also want to acquire a two-pocket folder to keep their work, notes, and assignments organized.

Continuity/Disaster Recovery Planning: THE STUDENT IS RESPONSIBLE TO BACK UP COURSE WORK AND CHECK FOR MALICIOUS CODE/VIRUSES REGULARLY. If files are not backed up, the student is responsible to re-create the file.

Course Policies:

Communicate with Your Instructor: Good communication between the student and the instructor prevents problems in many areas. Many of the following policies address problems that develop when the instructor and the student have not communicated. Communication is a responsibility of both students and instructor.

Research and Reference: Be ready to use your textbooks for reference as well as reading. If a term or concept is not clear, research it. Use conventional print as well as Internet and Web resources specific to the course content. Owning and growing your knowledge gives you expertise.

Preparation for Class: Keep to the assigned schedule. If a tutorial or assignment is due on a particular day, it is due at the beginning of class. Even if problems occur (they always do), your instructor expects you to submit what you can on the due date, then undertake problem solving, seek assistance as needed, and resubmit the completed work. Problems and questions will be reviewed at the start of each class period where possible, or addressed during an appropriate part of the class session.

Tests: There are no make-up tests except for verified emergencies (injury or health-related crisis to the student or to an individual under the student’s direct care). Telephone, voicemail, or email communication must occur at the time of the emergency or, as soon as possible, by the student or family member. Verification (hospital, doctor, police report) must be presented immediately upon return to class and the test should be taken before the next class session.

Requests to re-schedule a test for serious need must be made to the instructor in written format (email) with justification. The instructor assumes that the student is aware of the class schedule and will not schedule other activities during class times.

Late Work: Extenuating circumstances concerning late assignments will be treated on an individual basis. There are situations in which students will be permitted to turn in assignments after the due date without penalty, but equity is a primary consideration in exercising this policy. No late assignments will be accepted after the last day of class.
Participation: Regular class attendance and active participation in classes are important elements in the learning process. Students are in college primarily for the sake of their intellectual growth and development. Attendance and participation provide appropriate opportunities for the evaluation of the student’s progress and create an environment of cooperative learning between the student and instructor.

Academic Honesty: Why would a student submit someone else’s work? The student gains no knowledge; the student masters nothing. However, some students take the work of others, while others give their work to students to claim as their own.

There are two parties to academic dishonesty.

· Any work submitted as the student’s own work must be his/her own work. To submit the work of others is intellectually dishonest and carries penalties. The instructor reserves the right to apply college policies to work submitted by a student but prepared by others.

· Any work provided to others to submit is also dishonest. Any student inclined to share work on the basis of “helping another” may be helping another to get a degree. They may also be contributing to incompetent work in the workforce.

· Your integrity matters.

Other:

· Please ask about having guests attend class. Individuals who are not members of the class affect both the instructor and other students.

· Cell phones should be in silent mode if a student is required by employment to be available or if a serious situation has developed or is impending. Students are asked to leave the class quietly for these types of calls and to return quietly upon their completion.

College Policies:

The College has a number of policies, procedures, rules and regulations which apply to all students. The Delta College Catalog, which is available both in print form and online at http://www.delta.edu/catalog/, includes many of them.

They include but are not limited to the rules in Section VI on Student Rights and Responsibilities, Integrity of Academic Work, Disruptive Students, Student Complaint and Hearing Process, Electronic Resources Access and Use Guidelines; Safety and Security policies, including Sexual Harassment; and student Records Access and Confidentiality.

They also include but are not limited to Academic Policies in Section IV on Grading System including I - Incomplete grades and Attendance Policy and Disputed Final Grade Policy.

The policies, procedures, rules and regulations published in the Catalog apply to you as a student in this course, and you are responsible for knowing and following them. You should also be familiar with, and follow, your instructor’s individual policies to ensure your success in the course.

The College also provides free resources to support student success such as the Teaching/Learning Center (http://www.delta.edu/tlc) located in the library and Counseling and Academic Advising, in D-102, phone 686-9330. If you have a disability that may interfere with your ability to benefit from the courses you are taking, it is your responsibility to make the College aware of this. Please contact Michael Cooper, Director of Disability Services, in D-106, phone 686-9322, or e-mail at michaelcooper2@delta.edu.

1

