Biology 152 - Brain/Spinal Cord/Ear/Eye Objectives

Items will be identified on a sheep's brain dissection, human brain models, sagittal/coronal sections of human brains in plastic, ear and eye models, and an eye dissection. You will need to learn a **proper** *function* for each listed item for the practical.

BRAIN REGIONS - learn their names, position in the brain, and functions

Neninges protective tissue tugers around the orain and spinal cora	
Dura mater	strong mother, collagenous layer with dural sinuses, protects brain and
	allows reabsorption of CSF into blood stream
Arachnoid	arachnoid villi "pooch" into dural sinus to allow CSF loss to blood, holds
membrane	CSF and allows circulation around brain/spine
Pia mater	weak mother, holds shape of brain and allows diffusion of nutrients and
	wastes between tissues and CSF

Meninges – protective tissue layers around the brain and spinal cord

L/R Hemispheres	dual hard drives that control behavior and store all memory
Cerebral cortex	thin gray matter (nonmyelinated) layer that stores information
Frontal lobe	site of voluntary motor control, behavior, and intelligence
Parietal lobe	site of gustatory (taste) storage, special sense/navigation ability
Temporal lobe	site of olfactory and auditory memory storage
Occipital lobe	site of visual memory storage
Precentral gyrus	primary motor cortex router connecting frontal lobe to muscles
Postcentral gyrus	primary somatosensory router connecting senses to posterior brain regions

Cerebrum – two hemispheres where all conscious thought occurs

Central sulcus	low spot in cerebrum dividing all motor from all sensory areas
Gyri/sulci	ridges and folds in cerebrum/cerebellum that increase surface area
Corpus callosum	fast (100m/s) myelinated tract used to connect L/R cerebral hemispheres
Grey matter	slow (1m/s) nonmyelinated neurons used for decision making/memory
White matter	fast (100m/s) myelinated tracts used to connect brain regions

Forebrain Structures

Thalamus	central forebrain router for all sensory/motor impulses <i>except</i> olfactory
Hypothalamus	measures blood variables and generates cravings (for food, water, etc.)
Infundibulum	stalk of pituitary, connects hypothalamus to pituitary (for ADH/oxytocin)
Hypophysis (or	"Master Gland" of the body, secretes GH, ACTH, LH, FSH, TSH, ADH, and
pituitary gland)	oxytocin to control most of our physiology
Pineal Gland	posterior to thalamus, secretes melatonin to control sleep/wake cycles

Midbrain Structures

Corpora quadrigemina	Posterior area consisting of 2 <i>superior colliculi</i> (visual reflex actions)
	and 2 <i>inferior colliculi</i> (auditory reflex actions)

Hindbrain Structures

Medulla oblongata	controls primitive repetitive autonomic activities (heart, lungs, GI, etc.)
Pons	connects medulla to cerebellum at 100 m/s, controls respiratory <i>depth</i>
Arbor vitae	branching "tree of life" connects brainstem to cerebellum at 100 m/s
Cerebellum	allows coordination of complex, repetitive, skilled fine-motor activities

CSF Creation And Flow

Lateral ventricles	feed nutrients to and remove wastes from the 2 cerebral hemispheres
Third ventricle	feeds nutrients to and remove wastes from the thalamus/hypothalamus
Cerebral Aqueduct	allows CSF to flow down from third to fourth ventricles
Fourth ventricle	feed nutrients to and remove wastes from the hindbrain structures
Central canal	feed nutrients to and remove wastes from the internal spine
Choroid plexus	gray/brown mass of blood vessels that filters the blood to create CSF

Optic Pathway

Optic nerve	connects retina from each eye to optic chiasma; monocular
Optic chiasma	fusion point that crosses optic information from each eye; stereoscopic
Optic tract	connects optic chiasma to occipital lobes; stereoscopic

Olfactory Pathway

Olfactory bulb	allows synapsis of olfactory nerves through cribriform plate of ethmoid
Olfactory tract	channels olfactory impulses at 100 m/s back to inferior temporal lobes

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

SPINAL CORD ANATOMY - learn their names, position in the spine, and functions

Central canal	feed nutrients to and remove wastes from the internal spine
Anterior root	mass of motor axons exiting spine at 100 m/s to muscles/glands
Posterior root	mass of sensory axons entering spine at 100 m/s from lower body
Posterior root	mass of sensory cell bodies (with nuclei) inside vertebrae (for protection)
ganglion	
Spinal nerve	mixed mass of sensory and motor neurons connecting spine to lower body
Gray commissure	slow 1 m/s connection between gray matter in L/R spine

Specialized Structures

Gray Horns – slow, nonmyelinated "switches" allowing primitive decision making by the spine

<u> </u>	5 61 65 1
Anterior gray horn	slow 1 m/s somatic area controlling voluntary skeletal muscles
Lateral gray horn	slow 1 m/s area controlling involuntary glands and smooth muscles
Posterior gray horn	slow 1 m/s sensory area responding to sensory input into spine

Spinal Funiculi – fast 100 m/s "elevators" connecting brain above to reflex arcs at various levels in spine

Anterior funiculus	fast 100 m/s descending pathway from brain to skeletal muscles
Lateral funiculus	fast 100 m/s descending pathway from brain to glands/smooth muscles
Posterior funiculus	fast 100 m/s ascending pathway for sensory input to reach thalamus

CRANIAL NERVES – learn their names, generalized functions, and type (S/M/Mix)

On Old Olympus'	Towering	Top. A	Frisku	Veterinarian	Gave	Valeru A	A Hon
On Ou Orginpus	Towering	100,11	THUNG	V CICI IIIIII IIII	Gauce	vallig 1	11100

		γ	
#	Name	Generalized Function	Туре
1	Olfactory	Detects odors	Sensory
2	Optic	Detects light	
3	Oculomotor	Move eye medial, constrict pupil, focus eye up close	Motor
4	Trochlear	Move eye slightly for fine-focus	Motor
5	Trigeminal	<i>Opthalmic Division-</i> sensations from upper face	Mixed
	(3 branches)	Maxillary Division - Sensation from mid-face and upper teeth	
		Mandibular Division- Sensation from lower teeth and anterior	
		tongue plus motor to muscles of mastication	
6	Abducens	Moves eye lateral	Motor
7	Facial	superficial motor/sensory to muscles of facial expression,	Mixed
	(5 branches)	taste sensation (sweet), 5 branches from forehead to neck	
8	Vestibulocochlear	Hearing (cochlea) and static/dynamic balance (vestibule)	Sensory
9	Glossopharyngeal	Pharyngeal sensation and control of muscles involved with	Mixed
		swallowing action, parasympathetic control of parotid	
		salivary glands	
10	Vagus	Widest distribution of all cranial nerves (passes into thorax	Mixed
		and abdomen): sensory from larynx (cough reflex), motor to	
		muscles of pharynx and larynx, parasympathetic to thoracic	
		and abdominal viscera; involved in control of breathing rate,	
		heart rate, and digestive motility (peristalsis)	
11	Accessory	Motor to sternocleidomastoid and trapezius muscles	Motor
12	Hypoglossal	Motor to muscles of tongue	Motor

EYE STRUCTURES - models and dissection; learn their names, position, and functions

Cornea	"window of the eye"; stratified squamous nonkeratinized skin layer; starts to
	bend (refract) light into pupil
Lens	Behind iris; refracts light onto retina; reverses object (upside-down, L/R)
Aqueous humor	nutrient-rich saline solution created by choroid; keeps eye shape normal
Vitreous humor	thickened jello-like solution created in posterior eye; holds retina in place

Two intrinsic muscles of the eye

Iris	pigmented circular muscle that constricts/dilates to control light entry
Ciliary body	black muscle behind iris that constricts on lens for up close vision; mushroom cap

Three tunics of the eye

Sclera/Cornea	tough, collagenous sclera protects eye from punctures, allows attachment site
	for ocular muscles, and has blood vessels; cornea is clear window into eye
Choroid	black layer behind retina; absorbs light after viewing with retina; makes
	aqueous humor to provide nutrients for all internal eye structures
Retina	Thin layer of nervous sensory denrites; contains rods (for B/W vision) and
	cones (red/green/blue; color vision) to interpret visual information

Accessory structures of the eye

V
creates tears to rinse the eye of debris and microbes
reabsorbs tears and drains to nasal cavity
elevates eye upwards (innervated by oculomotor nerve)
depresses eye downwards (innervated by oculomotor nerve)
adducts eye medially (innervated by oculomotor nerve)
abducts eye laterally (innervated by abducens nerve)
medially rotates eye (innervated by trochlear nerve)
laterally rotates eye (innervated by oculomotor nerve)

Outer ear

External ear – designed to capture sound waves, amplify them, and transmit them to middle ear

Auricle (or pinna)	large radar dish made of elastic cartilage; amplifies captured sound waves
External auditory	transmits sound waves into temporal bone down to tympanic membrane
canal (or meatus)	
Tympanic	keeps debris/microbes out of middle ear; transmits sound waves to MIS;
membrane	sometimes intubated with children who suffer from chronic otitis media

Middle ear - contains ossicles	(MIS);	connects outer/inner ear;	contains stapedius "	'fuse"	for loud sounds
--------------------------------	--------	---------------------------	----------------------	--------	-----------------

TVITANC CAT CONTAINE	bobletes (1110), connects buter, inner eur, contains stapeatas Juse Jor toua sounds		
Malleus (MIS)	transmits sound from tympanic membrane to incus; allows "fuse"		
	w/tensor tympani muscle (to dampen loud sounds and chewing noise)		
Incus (MIS)	transmits sound from malleus to stapes		
Stapes (MIS)	transmits sound from incus to oval window, allows "fuse" w/stapedius		
	muscle (to dampen loud sounds and chewing noise)		
Oval window	transmits sound from stapes into vestibule and then the cochlea		
Eustachian tube	allows drainage of fluids from middle ear into throat; equalizes pressure		

Cochlea	tightly curled structure containing Organ of Corti to interpret sound		
Round window	tiny round membrane below vestibule that acts as "pressure release valve"		
Vestibule	contains two static equilibrium receptors (utricle and saccule) that detect		
	acceleration, deceleration, and head position in space, acts as steady cam		
	when running and bouncing		
Semicircular	Lie in three planes $(X/Y/Z)$; allow interpretation of dynamic (or spinning)		
canals	equilibrium using the superior (summersaults), posterior (cartwheels), and		
	lateral (spinning chair) semicircular canals		

Inner ear – contains vestibule/semicircular canals for balance and cochlea for hearing

On the practical itself, you will be given the following format. I will also provide a Cranial Nerve Chart with some of the items filled in:

Number	Structure (1pnt)	Proper Function (1pnt)
1		
2		
3		
4		