Linear Systems: Sink, Source, Saddle
 MTH 264 Differential Equations

Delta College

Now that we know how to construct eigenvectors for a given 2×2 matrix, we can begin to classify 2×2 linear systems. The simplest case is when the matrix has distinct, real, non-zero eigenvalues. We will have two linearly independent straight-line solutions. The straight-line solutions will either grow without bound or decay to the origin depending on whether the individual eigenvalues are positive or negative.
$\underline{\text { Sink }}-\lambda_{1}<\lambda_{2}<0$

$$
\frac{d}{d t} \vec{Y}=\left[\begin{array}{rr}
1 & 4 \\
-2 & -5
\end{array}\right] \vec{Y} \quad \lambda^{2}+4 \lambda+3=0 \quad \lambda_{1}=-3, \quad \lambda_{2}=-1
$$

$\lambda_{1}=-3 \Longrightarrow\left[\begin{array}{rr}4 & 4 \\ -2 & -2\end{array}\right] \Longrightarrow \vec{v}_{1}=\left[\begin{array}{r}1 \\ -1\end{array}\right] \Longrightarrow \vec{Y}_{1}=\left[\begin{array}{r}1 \\ -1\end{array}\right] e^{-3 t}$
$\lambda_{2}=-1 \Longrightarrow\left[\begin{array}{rr}2 & 4 \\ -2 & -4\end{array}\right] \Longrightarrow \vec{v}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right] \Longrightarrow \vec{Y}_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right] e^{-t}$

Source - $0<\lambda_{1}<\lambda_{2}$

$$
\begin{aligned}
& \frac{d}{d t} \vec{Y}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 4
\end{array}\right] \vec{Y} \quad \lambda^{2}-5 \lambda+6=0 \quad \lambda_{1}=2, \lambda_{2}=3 \\
& \lambda_{1}=2 \Longrightarrow\left[\begin{array}{ll}
-1 & 2 \\
-1 & 2
\end{array}\right] \Longrightarrow \vec{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow \vec{Y}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{2 t} \\
& \lambda_{2}=3 \Longrightarrow\left[\begin{array}{ll}
-2 & 2 \\
-1 & 1
\end{array}\right] \Longrightarrow \vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow \vec{Y}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Saddle - $\lambda_{1}<0<\lambda_{2}$

$$
\begin{gathered}
\frac{d}{d t} \vec{Y}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] \vec{Y} \quad \lambda^{2}-\lambda-2=0 \quad \lambda_{1}=-1, \lambda_{2}=2 \\
\lambda_{1}=-1 \Longrightarrow\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right] \Longrightarrow \vec{v}_{1}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \Longrightarrow \vec{Y}_{1}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] e^{-t} \\
\lambda_{2}=2 \Longrightarrow\left[\begin{array}{rr}
-1 & 2 \\
1 & -2
\end{array}\right] \Longrightarrow \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow \vec{Y}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{2 t}
\end{gathered}
$$

