
8/23/2014

1

Chapter 4:

Loops and Files

Starting Out with Java:

From Control Structures through Objects

Fifth Edition

by Tony Gaddis

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-2

Chapter Topics

Chapter 4 discusses the following main topics:

– The Increment and Decrement Operators

– The while Loop

– Using the while Loop for Input Validation

– The do-while Loop

– The for Loop

– Running Totals and Sentinel Values

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-3

Chapter Topics

Chapter 4 discusses the following main topics:

– Nested Loops

– The break and continue Statements

– Deciding Which Loop to Use

– Introduction to File Input and Output

– Generating Random Numbers with the Random

class

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-4

The Increment and Decrement Operators

• There are numerous times where a variable must

simply be incremented or decremented.
number = number + 1;

number = number – 1;

• Java provide shortened ways to increment and

decrement a variable’s value.

• Using the ++ or -- unary operators, this task can be

completed quickly.
number++; or ++number;

number--; or --number;

• Example: IncrementDecrement.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-5

Differences Between Prefix and Postfix

• When an increment or decrement are the only
operations in a statement, there is no difference
between prefix and postfix notation.

• When used in an expression:

– prefix notation indicates that the variable will be
incremented or decremented prior to the rest of the equation
being evaluated.

– postfix notation indicates that the variable will be
incremented or decremented after the rest of the equation has
been evaluated.

• Example: Prefix.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-6

The while Loop

• Java provides three different looping structures.

• The while loop has the form:
while(condition)

{

statements;

}

• While the condition is true, the statements will execute
repeatedly.

• The while loop is a pretest loop, which means that it
will test the value of the condition prior to executing
the loop.

IncrementDecrement.java
Prefix.java

8/23/2014

2

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-7

The while Loop

• Care must be taken to set the condition to false

somewhere in the loop so the loop will end.

• Loops that do not end are called infinite loops.

• A while loop executes 0 or more times. If the

condition is false, the loop will not execute.

• Example: WhileLoop.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-8

The while loop Flowchart

statement(s)

true
boolean

expression?

false

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-9

Infinite Loops

• In order for a while loop to end, the condition must
become false. The following loop will not end:

int x = 20;

while(x > 0)

{

System.out.println("x is greater than 0");

}

• The variable x never gets decremented so it will
always be greater than 0.

• Adding the x-- above fixes the problem.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-10

Infinite Loops

• This version of the loop decrements x

during each iteration:

int x = 20;

while(x > 0)

{

 System.out.println("x is greater than 0");

 x--;

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-11

Block Statements in Loops

• Curly braces are required to enclose block
statement while loops. (like block if
statements)

while (condition)

{

 statement;

 statement;

 statement;

}

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-12

The while Loop for Input Validation

• Input validation is the process of ensuring that user
input is valid.
System.out.print("Enter a number in the " +

 "range of 1 through 100: ");

number = keyboard.nextInt();

// Validate the input.

while (number < 1 || number > 100)

{

 System.out.println("That number is invalid.");

 System.out.print("Enter a number in the " +

 "range of 1 through 100: ");

 number = keyboard.nextInt();

}

• Example: SoccerTeams.java

WhileLoop.java
SoccerTeams.java

8/23/2014

3

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-13

The do-while Loop

• The do-while loop is a post-test loop, which means

it will execute the loop prior to testing the condition.

• The do-while loop (sometimes called called a do

loop) takes the form:

do

{

 statement(s);

}while (condition);

• Example: TestAverage1.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-14

The do-while Loop Flowchart

statement(s)

true
boolean

expression?

false

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-15

The for Loop

• The for loop is a pre-test loop.

• The for loop allows the programmer to initialize a

control variable, test a condition, and modify the

control variable all in one line of code.

• The for loop takes the form:
for(initialization; test; update)

{

statement(s);

}

• See example: Squares.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-16

The for Loop Flowchart

statement(s)
true boolean

expression?

false

update

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-17

The Sections of The for Loop

• The initialization section of the for loop
allows the loop to initialize its own control
variable.

• The test section of the for statement acts in the
same manner as the condition section of a
while loop.

• The update section of the for loop is the last
thing to execute at the end of each loop.

• Example: UserSquares.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-18

The for Loop Initialization

• The initialization section of a for loop is
optional; however, it is usually provided.

• Typically, for loops initialize a counter
variable that will be tested by the test section of
the loop and updated by the update section.

• The initialization section can initialize multiple
variables.

• Variables declared in this section have scope
only for the for loop.

TestAverage1.java
Squares.java
UserSquares.java

8/23/2014

4

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-19

The Update Expression

• The update expression is usually used to increment or

decrement the counter variable(s) declared in the

initialization section of the for loop.

• The update section of the loop executes last in the

loop.

• The update section may update multiple variables.

• Each variable updated is executed as if it were on a

line by itself.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-20

Modifying The Control Variable

• You should avoid updating the control variable
of a for loop within the body of the loop.

• The update section should be used to update the

control variable.

• Updating the control variable in the for loop

body leads to hard to maintain code and

difficult debugging.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-21

Multiple Initializations and Updates

• The for loop may initialize and update multiple
variables.
for(int i = 5, int j = 0; i < 10 || j < 20; i++, j+=2)

{

 statement(s);

}

• Note that the only parts of a for loop that are
mandatory are the semicolons.
for(;;)

{

 statement(s);

} // infinite loop

• If left out, the test section defaults to true.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-22

Running Totals

• Loops allow the program to keep running totals

while evaluating data.

• Imagine needing to keep a running total of user

input.

• Example: TotalSales.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Logic for Calculating a Running Total

4-23 ©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-24

Sentinel Values

• Sometimes the end point of input data is not known.

• A sentinel value can be used to notify the program to stop

acquiring input.

• If it is a user input, the user could be prompted to input data that

is not normally in the input data range (i.e. –1 where normal

input would be positive.)

• Programs that get file input typically use the end-of-file marker

to stop acquiring input data.

• Example: SoccerPoints.java

TotalSales.java
SoccerPoints.java

8/23/2014

5

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-25

Nested Loops

• Like if statements, loops can be nested.

• If a loop is nested, the inner loop will execute all of its

iterations for each time the outer loop executes once.
for(int i = 0; i < 10; i++)

for(int j = 0; j < 10; j++)

loop statements;

• The loop statements in this example will execute 100

times.

• Example: Clock.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-26

The break Statement

• The break statement can be used to

abnormally terminate a loop.

• The use of the break statement in loops

bypasses the normal mechanisms and makes the

code hard to read and maintain.

• It is considered bad form to use the break

statement in this manner.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-27

The continue Statement

• The continue statement will cause the currently

executing iteration of a loop to terminate and the next

iteration will begin.

• The continue statement will cause the evaluation of

the condition in while and for loops.

• Like the break statement, the continue statement

should be avoided because it makes the code hard to

read and debug.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-28

Deciding Which Loops to Use

• The while loop:

– Pretest loop

– Use it where you do not want the statements to execute
if the condition is false in the beginning.

• The do-while loop:

– Post-test loop

– Use it where you want the statements to execute at least
one time.

• The for loop:

– Pretest loop

– Use it where there is some type of counting variable that
can be evaluated.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-29

File Input and Output

• Reentering data all the time could get tedious for the
user.

• The data can be saved to a file.

– Files can be input files or output files.

• Files:

– Files have to be opened.

– Data is then written to the file.

– The file must be closed prior to program termination.

• In general, there are two types of files:

– binary

– text

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-30

Writing Text To a File

• To open a file for text output you create an
instance of the PrintWriter class.

PrintWriter outputFile = new PrintWriter("StudentData.txt");

Pass the name of the file that you

wish to open as an argument to the

PrintWriter constructor.

Warning: if the file

already exists, it will be

erased and replaced with

a new file.

Clock.java

8/23/2014

6

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-31

The PrintWriter Class

• The PrintWriter class allows you to write
data to a file using the print and println
methods, as you have been using to display
data on the screen.

• Just as with the System.out object, the
println method of the PrintWriter
class will place a newline character after the
written data.

• The print method writes data without
writing the newline character.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-32

The PrintWriter Class

PrintWriter outputFile = new PrintWriter("Names.txt");

outputFile.println("Chris");

outputFile.println("Kathryn");

outputFile.println("Jean");

outputFile.close();

Open the file.

Write data to the file.

Close the file.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-33

The PrintWriter Class

• To use the PrintWriter class, put the

following import statement at the top of the

source file:

import java.io.*;

• See example: FileWriteDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-34

Exceptions

• When something unexpected happens in a Java

program, an exception is thrown.

• The method that is executing when the

exception is thrown must either handle the

exception or pass it up the line.

• Handling the exception will be discussed later.

• To pass it up the line, the method needs a

throws clause in the method header.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-35

Exceptions

• To insert a throws clause in a method header,
simply add the word throws and the name of the
expected exception.

• PrintWriter objects can throw an
IOException, so we write the throws clause like
this:

public static void main(String[] args) throws IOException

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-36

Appending Text to a File

• To avoid erasing a file that already exists,
create a FileWriter object in this manner:

FileWriter fw =

 new FileWriter("names.txt", true);

• Then, create a PrintWriter object in this

manner:

 PrintWriter fw = new PrintWriter(fw);

FileWriteDemo.java

8/23/2014

7

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-37

Specifying a File Location

• On a Windows computer, paths contain
backslash (\) characters.

• Remember, if the backslash is used in a string

literal, it is the escape character so you must use

two of them:

PrintWriter outFile =

 new PrintWriter("A:\\PriceList.txt");

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-38

Specifying a File Location

• This is only necessary if the backslash is in a
string literal.

• If the backslash is in a String object then it
will be handled properly.

• Fortunately, Java allows Unix style filenames
using the forward slash (/) to separate
directories:
PrintWriter outFile = new

 PrintWriter("/home/rharrison/names.txt");

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-39

Reading Data From a File

• You use the File class and the Scanner

class to read data from a file:

File myFile = new File("Customers.txt");

Scanner inputFile = new Scanner(myFile);

Pass the name of the file as an

argument to the File class

constructor.

Pass the File object as an

argument to the Scanner

class constructor.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-40

Reading Data From a File
Scanner keyboard = new Scanner(System.in);

System.out.print("Enter the filename: ");

String filename = keyboard.nextLine();

File file = new File(filename);

Scanner inputFile = new Scanner(file);

• The lines above:

– Creates an instance of the Scanner class to read from the keyboard

– Prompt the user for a filename

– Get the filename from the user

– Create an instance of the File class to represent the file

– Create an instance of the Scanner class that reads from the file

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-41

Reading Data From a File

• Once an instance of Scanner is created, data can be read

using the same methods that you have used to read keyboard
input (nextLine, nextInt, nextDouble, etc).

// Open the file.

File file = new File("Names.txt");

Scanner inputFile = new Scanner(file);

// Read a line from the file.

String str = inputFile.nextLine();

// Close the file.

inputFile.close();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-42

Exceptions

• The Scanner class can throw an

IOException when a File object is

passed to its constructor.

• So, we put a throws IOException clause

in the header of the method that instantiates

the Scanner class.

• See Example: ReadFirstLine.java

ReadFirstLine.java

8/23/2014

8

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-43

Detecting The End of a File

• The Scanner class’s hasNext() method will
return true if another item can be read from the
file.
// Open the file.

File file = new File(filename);

Scanner inputFile = new Scanner(file);

// Read until the end of the file.

while (inputFile.hasNext())

{

 String str = inputFile.nextLine();

 System.out.println(str);

}

inputFile.close();// close the file when done.

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-44

Detecting the End of a File

• See example: FileReadDemo.java

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-45

Generating Random Numbers with the
Random Class

• Some applications, such as games and simulations,

require the use of randomly generated numbers.

• The Java API has a class, Random, for this purpose.

To use the Random class, use the following import

statement and create an instance of the class.

import java.util.Random;

Random randomNumbers = new Random();

©2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4-46

Some Methods of the
Random Class

Method Description

nextDouble() Returns the next random number as a double. The number

will be within the range of 0.0 and 1.0.

nextFloat() Returns the next random number as a float. The number

will be within the range of 0.0 and 1.0.

nextInt() Returns the next random number as an int. The number

will be within the range of an int, which is –2,147,483,648

to +2,147,483,648.

nextInt(int n) This method accepts an integer argument, n. It returns a

random number as an int. The number will be within the

range of 0 to n.

See example: RollDice.java

FileReadDemo.java
RollDice.java

