

Modeling in the pathways

MichMATYC Fall Conference
Delta College, University Center, Michigan Saturday, October 15, 2016

A Common Vision

These diverse stakeholders have made excellent, yet separate, recommendations for improving undergraduate math courses.

All advocate for modeling.

Crossroads (1995) Beyond Crossroads (2006)
 Crossroads Sequel (2018?)

Strands in the undergraduate curriculum:
-Problem solving

- Modeling
-Communicating in appropriate written and oral mathematical language
- Using technology appropriately
-Exhibiting perseverance, ability, and confidence
- Using basic descriptive statistics

First report: 1953
Previous report: 2004
New report: 2015

Content Recommendations:

1. Mathematical sciences major programs should include concepts and methods from calculus and linear algebra.
2. Students majoring in the mathematical sciences should learn to read, understand, analyze, and produce proofs at increasing depth as they progress through a major
3. Mathematical sciences major programs should include concepts and methods from data analysis, computing, and mathematical modeling.
4. Mathematical sciences major programs should present key ideas and concepts from a variety of perspectives to demonstrate the breadth of mathematics.
5. Students majoring in the mathematical sciences should experience mathematics from the perspective of another discipline.
6. Mathematical sciences major programs should present key ideas from complementary points of view: continuous and discrete; algebraic and geometric; deterministic and stochastic; exact and approximate

CUPM Subcommittee on
 Curriculum Renewal Across the First Two Years (CRAFTY)

College Algebra Guidelines (CRAFTY, 2007)

College Algebra provides students a college level academic experience that emphasizes the use of algebra and functions in problem solving and modeling, provides a foundation in quantitative literacy, supplies the algebra and other mathematics needed in partner disciplines, and helps meet quantitative needs in, and outside of, academia.

Course competencies:
Problem Solving
Functions and Equations
Data Analysis

Partner Discipline Recommendations for Introductory College
Mathematics and the Implications for College Algebra (CRAFTY, 2011)

CRAFTY recommendations, in the first two years:
Replace traditional college algebra courses with courses stressing problem solving, mathematical modeling, descriptive statistics, and applications in the appropriate technical areas.

Deemphasize intricate algebraic manipulation.

Guidelines for Assessment and Instruction in Statistics Education (GAISE)
The American Statistical Association (ASA) 2005/2016

1. Emphasize statistical literacy and develop statistical thinking
2. Use real data
3. Stress conceptual understanding, rather than mere knowledge of procedures
4. Foster active learning in the classroom
5. Use technology for developing conceptual understanding and analyzing data
6. Use assessments to improve and evaluate student learning

A modern math sciences undergraduate education should include at least some introduction to
-Algorithms and Analysis
-Distributed Computing and Big Data
-Data Analytics
-Modeling with Probability and Stochastic Processes

MODELING across the CURRICULUM

Report on a SIAM-NSF Workshop* Arlington, Virginia August 30-31, 2012
siほm.

-Bayesian Statistics and Machine Learning
-Dynamical Systems
-Optimization and Control

COMMMON CORE

STATE STANDARDS INITIATIVE
PREPARING AMERICA'S STUDENTS FOR COLLEGE \& CAREER

Mathematical practice standards

The Standards mandate that eight principles of mathematical practice be taught:
-Make sense of problems and persevere in solving them.
-Reason abstractly and quantitatively.
-Construct viable arguments and critique the reasoning of others.
-Model with mathematics.
-Use appropriate tools strategically.
-Attend to precision.
-Look for and make use of structure.
-Look for and express regularity in repeated reasoning.

A Common Vision for the Undergraduate Mathematics Program in 2025 Working together we can ...

- Create new standards for the curriculum in the first two years of college.

No doubt, modeling will be included in the list of standards.

What is mathematical modeling?

Many times, real data is involved:
-Empirical modeling involves examining data related to the problem with a view of formulating or constructing a mathematical relationship between the variables in the problem using the available data.
-Deterministic modeling in general involves the use of an equation or set of equations to model or predict the outcome of an event or the value of a quantity.
https://www.youtube.com/watch?v=jbkSRLYSojo

Is there a relationship between a woman's formal education and the number of children she has?

Fertility Rate: Children per woman

Does smoking cause lung cancer?

Relationship between smoking and cancer deaths in males

Is there a relationship between the age of women at first marriage, the number children they have, and their income?

https://www.youtube.com/watch?v=jbkSRLYSojo

Relationship between dividend yield, 1-year return and P / E ratio

Modeling is more than curve fitting ...

Levels of modeling problems Based on the completeness and ambiguity of the information composing a problem, modeling problems can be categorized into three levels with Level 3 being the most authentic type, modified from the work of Galbraith and Clatworthy (1990), as follows:

Level 1: Problems at this level are already carefully defined so there is little ambiguity about what needs to be done and how to do it. They contain all the information necessary to formulate a model. They either specifically call for a certain procedure to be used or its use is evident on prior instruction or placement of the task. Students are expected to search for the needed information that is hidden in the problem, recall the (implicitly or explicitly) called for procedure, and carry it out correctly. There is no need to collect additional data to formulate a model.

Level 2: Problems at this level still have a little ambiguity about what needs to be done and how to do it. However, they do not provide all the information needed to successfully complete the task. Although students may be given a direction of what data is needed, they need to devise a meaningful way to gather the needed data and test if the gathered data would produce a reasonable answers.

Level 3: Problems at this level are comprised of information that is open-ended, incomplete and/or redundant. There is not a well-rehearsed approach or pathway explicitly suggested by the task. Students are expected to analyze the task to find what needs to be done and actively examine tasks constraints that may limit or suggest possible solution strategies and solutions.

If the surface area of Lake superior is 31,700 square miles, if there are about 7.3 billion people in the world, and if each person would require about 18 square feet of space to float in water, could all of the world's people float in Lake Superior?

If the surface area of Lake superior is 31,700 square miles, if there are about 7.3 billion people in the world, and if each person would require about 18 square feet of space to float in water, could all of the world's people float in Lake Superior?

$31,700 \mathrm{mi}^{2} \bullet \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} \approx 884$ billion ft^{2}
7.3 billion people $\bullet \frac{18 \mathrm{ft}^{2}}{1 \text { person }} \approx 131$ billion ft^{2}

Can all of the world's people float in Lake Superior?

If yes, when
will this no
longer be the
case?

MICHIGAN LOTTERY.

Prize Amount	Start	Remaining
$\$ 30,000$	3	3
$\$ 1,000$	61	55
$\$ 100$	937	758
$\$ 40$	13,322	11,006
$\$ 20$	117,458	97,788
$\$ 10$	117,635	99,252
$\$ 5$	287,791	242,291
$\$ 4$	411,025	350,619
$\$ 2$		58,339

Top Prize	$\mathbf{\$ 3 0 , 0 0 0}$
Overall Odds	$\mathbf{1}$ in $\mathbf{4 . 6 1}$
Release Date	October 4, $\mathbf{2 0 1 6}$

How many losing tickets will be sold? Hint: There are $1,018,660$ winning tickets.

Prize Amount	Start	Remaining
$\$ 30,000$	3	3
$\$ 1,000$	61	55
$\$ 100$	937	758
$\$ 40$	13,322	11,006
$\$ 20$	70,428	58,339
$\$ 10$	117,458	97,788
$\$ 5$	117,635	99,252
$\$ 4$	287,791	242,291
$\$ 2$	411,025	350,619

$\frac{\text { Winners }}{\text { Losers }}=\frac{1}{4.61}=\frac{1,018,660}{x}$
$x=4,696,022.6$
$\approx 4,696,023$

Top Prize	$\$ 30,000$
Overall Odds	$\mathbf{1}$ in $\mathbf{4 . 6 1}$
Release Date	October 4,2016

Compute and interpret the expected winnings of an instant lottery "scratch off" ticket.

Prize Amount	Tickets
0	4696023
2	411025
4	287791
5	117635
10	117458
20	70428
40	13322
100	937
1000	61
3000	3

Cost per ticket $=\$ 2$
Total tickets sold $=5,714,683$

Winnings (x)	Probability, $p(x)$	$x p(x)$
-2	0.82174689	-1.64349379
0	0.07192437	0.00000000
2	0.05035992	0.10071985
3	0.02058469	0.06175408
8	0.02055372	0.16442977
18	0.01232404	0.22183278
38	0.00233119	0.08858514
98	0.00016396	0.01606843
998	0.00001067	0.01065291
29998	0.00000052	0.01574786
	Expected Value $=$	-0.96370297

Construct an instant lottery "scratch off" ticket with the following requirements.
-The cost to purchase your lottery ticket must be one of the following amounts: $\$ 1$, $\$ 2, \$ 5, \$ 10$, or \$20.
-There must be exactly 5 non-zero different prizes. A $\$ 0$ prize (or loser) is not considered a prize. One prize should allow the player to break even. All other prizes should lead to winnings for the player.
-The grand prize must be $\$ 200,000$. More than one ticket may win the grand prize amount.
-There must be 9,000,000 tickets sold.
-The state must make a profit of $\$ 6,000,000$ or more on the sale of the tickets. Let's define profit as total revenue (via the sale of the tickets) minus the payout of prizes.
-The expected consumer loss per ticket must be less than $\$ 1$.
-The odds of winning must be better than 1:4.
-Create a spreadsheet in Excel to model your ticket.

Ticket cost $=\$ 5$
Odds $=1: 1.5$ or $2: 3$
Profit $=\$ 6,000,000$

Prize (In dollars)	Number of Tickets
0	5399980
5	2000000
10	1000000
20	500000
50	100000
200000	20
	Total $=9,000,000$

$\mathrm{x}(\mathrm{In}$ dollars)	$\mathrm{P}(\mathrm{x})$	$\mathrm{x} \mathrm{P}(\mathrm{x})$
-5	0.599998	-2.99999
0	0.222222	0
5	0.111111	0.555556
15	0.055556	0.833333
45	0.011111	0.5
199995	$2.22 \mathrm{E}-06$	0.444433
	Expected Value $=\mu=\sum \mathrm{x} \mathrm{P}(\mathrm{x})=-.66667$	

Modeling - The Mathematics of Finance

If you invest a lump sum of $\$ 1,000$ at 21% interest compounded annually, how much will you have after 40 years?

If you invest a lump sum of $\$ 1,000$ at 21% interest compounded annually, how much will you have after 40 years?

$$
\mathrm{FV}=1000(1+0.21)^{40} \approx \$ 2,048,400
$$

Modeling - The Mathematics of Finance

What the interest rate on your bank checking or savings account?

If I told you that it is possible to earn a 21% return per year on an investment, guaranteed, would you believe me?

Modeling - The Mathematics of Finance

Many employers offer a 401 K or 403B plan that allows employees to invest for retirement. The beauty of the plan is that employees who invest $\$ 15,000$ in a year, will pay federal taxes on $\$ 15,000$ less in income - a tremendous tax savings. If we assume that the tax saved equals the rate of return on an investment, calculate the return on investment for the two employees below. Use the current tax rates for a single person.

AGI	$\mathbf{\$ 5 0 , 0 0 0}$	$\$ 50,000$	
Investment in TSA	$\$ 15,000$	$\$ 0$	
Taxable Income			
Fed Tax Paid			
State Tax Paid (4\%)			
Tax Savings:			
Rate of return:			

Many employers offer a 401K or 403B plan that allows employees to invest for retirement. The beauty of the plan is that employees who invest $\$ 15,000$ in a year, will pay federal taxes on $\$ 15,000$ less in income - a tremendous tax savings. If we assume that the tax saved equals the rate of return on an investment, calculate the return on investment for the two employees below. Use the current tax rates for a single person.
\$0- \$9,275 10\%
\$9,276- \$37,650 15\%
\$37,651- \$91,150 25\%
\$91,151-\$190,150 28\%
\$190,151-\$413,350 33\%
\$413,351-\$415,050 35\%
\$415,051+
39.6\%

AGI	$\$ 50,000$	$\$ 50,000$
Investment in TSA	$\$ 15,000$	$\$ 0$
Taxable Income	$\$ 50,000-\$ 15,000=\$ 35,000$	$\$ 50,000$
Fed Tax Paid	$\$ 4,786.25$	$\$ 7,343.75$
State Tax Paid (4\%)	$(.04)(\$ 35000)=\$ 1,400$	$(.04)(\$ 50000)=\$ 2,000$
Tax Savings:	$(\$ 7,343.75+\$ 2,000)-(\$ 4,786.25+\$ 1,400)=\$ 3,157.50$	
Rate of return:	$\$ 3,157.50 / \$ 15,000=21.05 \%$	

Modeling - The Mathematics of Finance

Over a 40-year period, John invested \$4,000 per year at 8\% annual interest for the first twenty years, then invested nothing over the last 20 years. During the last 20 years, his investments accumulated interest at 9% annual interest. How much did John accumulate over the 40-year period?

Johnny on the Spot

$$
F V=P M T\left[\frac{(1+r / m)^{m t}-1}{r / m}\right]
$$

$$
A=P\left(1+\frac{r}{m}\right)^{m t}
$$

T1-84 Plus Silver Edition
地 Texas Instruments
$\mathrm{N}=20$

$\mathrm{F}=\mathbf{1}$
$\mathrm{PHT}=-4 \mathrm{FED}$

- FV=183 847 . 852
$\mathrm{P} \cdot \mathrm{H}=1$
$\mathrm{BH}=1$
FWT:EREGBEIH

T1-84 Plus Silver Edition
地 Texas Instruments

Johnny come lately

$$
F V=P M T\left[\frac{(1+r / m)^{m t}-1}{r / m}\right]
$$

Two teachers saved for retirement over a 40-year period in two different ways. Johnny on the Spot invested \$4,000 per year for the first twenty years, then invested nothing over the last 20 years. Johnny Come Lately invested nothing for the first twenty years, but then invested 5\% of his annual income per year over the remaining 20 years. Who was the wiser investor and why?

How much should I invest each month beginning now so that when I retire in 40 years, I will have accumulated enough to pay myself $\$ 3,000$ per month for 30 years? Assume a 5% interest rate on the investments over the entire period.

$$
P V=P M T\left[\frac{1-(1+r / m)^{-m t}}{r / m}\right]
$$

TI-84 Plus Silver Edition
14 Texas Instruments
N $=36$
I\% =5

- PV=558844.8511 $\mathrm{FHT}=-3 \mathrm{GCl}$
$\mathrm{Fv}=\mathbf{0}$
$\mathrm{F} \cdot \mathrm{Y}=12$
$\mathrm{C} \cdot \mathrm{V}=12$
FMT:EAL BEGIH

TAT PLOT F1 TBLSET F2 FORMAT F3 CALC F4 TABLE F5

$$
F V=P M T\left[\frac{(1+r / m)^{n t}-1}{r / m}\right]
$$

TI-84 Plus Silver Edition

- 4 Texas Instruments

```
N=46
I%=5
PW=G
- FHT= -36G. 2106G...
FW=558444.85
P.V=12
CM=12
FHT:ENEBEGIH
```

Total investment: \$175,780.80
Total future payout: $\$ 1,080,000$

Jim is 60 years old and is considering retirement in 5 years. He has a 403 b with $\$ 100,000$. His 403 b is growing at about 3.5% per year. His most recent Social Security statement states that if he works until age 62 , he would earn $\$ 2,500$ per month. If Jim would like to withdraw about $\$ 5,000$ per month in retirement, will he be able to retire at age 65 ? Assume that Jim will receive a monthly payment from Social Security upon retirement, and his Social Security check would increase by 8% for each year he delays benefits from age 65 until age 70 . Assume also that Jim plans to live until age 90.

If Jim is unable to retire at age 65 , then at what age should he retire so that he is able to receive $\$ 5,000$ per month?

Modeling problems from the math of finance

-Saving \& Investing

-How much should I invest out of each paycheck to accumulate \$1,000,000 in my lifetime?
-Can I (or my parents) retire in 5 years?
-How much should I invest each month beginning now so that I could retire when I am 65 years old?

-Managing Debt

-Should we refinance if we plan to move in 5 years?
-Should I purchase or lease a new car?
-What's better when purchasing a new car: the cash-back offer or the lower interest rate?
-Should I rent or purchase a new home?
-Is it possible that a more expensive car can actually be cheaper to own than a less expensive car over a three-year period?

-Budgeting

-How much would my pack-a-day smoking habit really cost over a lifetime?

Modeling with probabilities
-About 13\% of HIV infected Americans do not know that they have been infected.
-Close to 80% of Americans with herpes are unaware that they have been infected.

Should we require blood tests for the entire population to determine the incidence of various infections such as HIV or herpes?

Problem: About 0.3% of the adult U.S. population has been infected with HIV. A blood test to determine if a patient is infected is 99% accurate, if the person has the virus, and 95% accurate if the patient is not infected with the virus.

What is the probability of a false positive?

Problem: About 0.3% of the adult U.S. population has been infected with HIV. A blood test to determine if a patient is infected is 99% accurate, if the person has the virus, and 95% accurate if the patient is not infected with the virus.

What is the probability of a false positive?

Problem: About 0.3% of the adult U.S. population has been infected with HIV. A blood test to determine if a patient is infected is 99% accurate, if the person has the virus, and 95% accurate if the patient is not infected with the virus.

What is the probability that a patient who receives a positive blood test result actually is infected with the virus?

Problem: About 0.3% of the adult U.S. population has been infected with HIV. A blood test to determine if a patient is infected is 99% accurate, if the person has the virus, and 95% accurate if the patient is not infected with the virus. What is the probability that a patient who receives a positive blood test result actually is infected with the virus?

x	$p(x)$	
S and Pos	$0.003(.99)=0.00297$	$\mathrm{P}(\mathrm{S} \mid \mathrm{Pos})=\frac{0.00297}{0.00297+0.04985} \approx 0.06$
S and Neg	$0.003(.01)=0.00003$	
$\mathrm{~S}^{c}$ and Pos	$0.997(.05)=0.04985$	
$\mathrm{~S}^{c}$ and Neg	$0.997(.95)=0.94715$	

Modeling problem: Suppose that 25% of the adult U.S. population is infected with a virus. What must the probability of a false positive and false negative be (assume they are the same) so that the probability that a patient who receives a positive blood test result is actually infected with the virus is greater than 0.95 ?

Herpes - Type I (60-70\% infection rate)

x	$\mathrm{p}(\mathrm{x})$	$\mathrm{P}\left(\mathrm{~S} \mid \mathrm{POS}_{\mathrm{O}}\right)=\frac{0.6435}{0.6435+0.0175} \approx 0.97$
S and Pos	$0.65(.99)=0.6435$	
S and Neg	$0.65(.01)=0.0065$	
S'and Pos	$0.35(.05)=0.0175$	
$\mathrm{S}^{\text {c and }} \mathrm{Neg}$	$0.35(.95)=0.3325$	

Herpes - Type II (15-20\% infection rate)

x	$p(x)$	
S and $P o s$	$0.20(.99)=0.198$	$\mathrm{P}(\mathrm{S} \mid \mathrm{POS})=\frac{0.198}{0.198+0.040} \approx 0.83$
S and Neg	$0.20(.01)=0.002$	
S^{c} and Pos	$0.80(.05)=0.040$	
S^{c} and Neg	$0.80(.95)=0.760$	

HIV/AIDS (0.3\% infection rate)

x	$\mathrm{P}(\mathrm{x})$	
S and Pos	$0.003(.99)=0.00297$	$\mathrm{P}(\mathrm{S} \mid \mathrm{POS})=\frac{0.00297}{0.00297+0.04985} \approx 0.06$
S and Neg	$0.003(.01)=0.00003$	
$\mathrm{~S}^{c}$ and Pos	$0.997(.05)=0.04985$	
$\mathrm{~S}^{c}$ and Neg	$0.997(.95)=0.94715$	

Suppose that 25% of the adult U.S. population is infected with a virus. What must the probability of a false positive and false negative be (assume they are the same) so that the probability that a patient who receives a positive blood test result is actually infected with the virus is greater than 0.95 ?

If the prevalence is 25%, the probability of a false positive and false negative must both be less than .0172 in order for the blood test to give a correct result 95% of the time.

Math magic. How did he do that?
https://www.youtube.com/watch?v=BOsLeBV0R3g

$x=$ my age

$$
x+3
$$

$$
x+3-5=x-2
$$

$x-2+7=x+5$
 $10 * 2=20$

Math magic. How did he do that?
http://www.digicc.com/fido/

Jumble up all the digits in your number to make - another number.
so if you chose 4765 you could make 5469
And now that you have two numbers, subtract the smaller number from the larger one.

Eg. 5467 minus 4765
ok, now draw a circle around one of the digits in your answer...
(But don't pick a zero coz that's already a circle.)

AND DON'T LET ME SEE IT!!

Finally, jumble up all the o numbers in your answer and type them in, except for the one you circled
So if your answer was 5560 you could draw a circle around one of the fives and type in 65θ or 56%
\square

Finally, jumble up all the numbers in your answer and type them in, except for the one you circled

So if your answer was 5560 you could draw a circle around one of the fives and type in 65% or 56% .290

5287-2578
$=2709$ (divisible by 9)

2(7)09

So many numbers...
But you picked...
THIS ONE!
THINK CLEAR

$2+0+9=11$
$11+$ __-_ = Multiple of 9

Modeling to understand current events.

February 17, 2016

"The richest 80 people in the world own more wealth than the bottom half of the global population."

- Bernie Sanders

September 21, 2015

"The top $1 / 10$ th of 1 percent today in America owns almost as much wealth as the bottom 90 percent."

- Bernie Sanders

July 29, 2015
"The top one-tenth of 1 percent" of Americans "own almost as much wealth as the bottom 90 percent."

- Bernie Sanders

June 18, 2015
"The gap between the very rich and everyone else in America is wider today than at any time since the 1920s."

- Bernie Sanders

A comparison between the Top 10\% and Bottom 90\%, Average Income in the U.S.

Income share of the top 1\% over time for several countries

- Australia
- France
\triangle Japan
\times Singapore
- United States

Presidential Candidate	Vice Presidential Candidate	Political Party	Popular Vote		Electoral Vote	
\square	George W. Bush	Richard Cheney	Republican	$50,460,110$	47.87%	271
\square	50.4%					
\square Albert Gore Jr.	Joseph Lieberman	Democratic	$51,003,926$	48.38%	266	49.4%
\square	Ralph Nader	Winona LaDuke	Green	$2,883,105$	2.73%	0
\square Patrick Buchanan	Ezola Foster	Reform	449,225	0.43%	0	0.0%
\square	Harry Browne	Art Olivier	Libertarian	384,516	0.36%	0
\square	-	236,593	0.22%	0	0.0%	
\square Other (+)	-	-		0.0		

$\rightarrow 200$ Presidential General Election Results - Florida $\rightarrow+$

	Presidential Candidate	Vice Presidential Candidate	Political Party	Popular Vote		Electoral Vote
\square	George W. Bush	Richard Cheney	Republican	$2,912,790$	48.85%	25
\square	Albert Gore Jr.	Joseph Lieberman	Democratic	$2,912,253$	48.84%	0
\square	Ralph Nader	Winona LaDuke	Green	97,488	1.63%	0
\square	Patrick Buchanan	Ezola Foster	Reform	17,484	0.29%	0
\square	Harry Browne	Art Olivier	Libertarian	16,415	0.28%	0
\square	Other (+)	-	-	6,680	0.11%	0

因 2000 Presidential General Election Results - Florida

Palm Beach County

	Presidential Candidate	Vice Presidential Candidate	Political Party	Popular Vote	
\square	Albert Gore Jr.	Joseph Lieberman	Democratic	269,754	62.27%
\square	George W. Bush	Richard Cheney	Republican	152,964	35.31%
\square	Ralph Nader	Winona LaDuke	Green	5,566	1.28%
\square	Patrick Buchanan	Ezola Foster	Reform	3,411	0.79%
\square	Other (+)	-	-	1,527	0.35%

Can one U.S. county dramatically influence the results of the U.S. presidential election??

Can one U.S. county dramatically influence the results of the U.S. presidential election??

ELECTORS FOR PRESIDENT

AND VICE PRESIDENT
(A vote for the candidates will actually be a vote for their electors.)
(Vote for Creopl)

OFFICIAL BALLOT, GENERAL ELECTION PALM BEACH COUNTY, FLORIDA NOVEMBER 7, 2000

OFFICIAL BALLOT, GENERAL EIECTION PALM BEACH COUNTY, FLOR DA NOVEMBER 7, 2000
(REPUBLICAN)
GEORGE W. BUSH patsiogr DICK CHENEY vCe PRESIDCMT
(DEMOCRATIC)
AL GORE passiont JOE LIEBERMAN nCE PRESIONT

HARRY BROWNE PRISIOCOT ART OLIVIER vCe Passiogi RALPH NADER PKESDCMT WINONA LaDUKE nce pasionst
(SOCIALIST WORKERS)

JAMES HARRIS Passiocm

 MARGARET TROWE nct Putsoog
(NATURAL LAW)

JOHN HAGELIN patsioent NAT GOLDHABER nce patsiogis

Federal official vote for the state of Florida (25 electoral votes)

Presidential candidate and running mate	Vote total	$\%$	Party
George Walker Bush- Richard Bruce Cheney	$\mathbf{2 , 9 1 2 , 7 9 0}$	$\mathbf{4 8 . 8 4 7} \%$	Republican
Albert Arnold Gore Jr-- Joseph Isadore Lieberman	$2,912,253$	$\mathbf{4 8 . 8 3 8 \%}$	Democratic

2000 Presidential Election - Florida County Votes

https://en.wikipedia.org/wiki/United_States_presidential_election_in_Florida,_2000 http://projecteuclid.org/download/pdf_1/euclid.ss/1049993203

2000 Presidential Election - Florida County Votes

Federal official vote for the state of Florida (25 electoral votes)

Presidential candidate and running mate	Vote total	$\%$	Party
George Walker Bush- Richard Bruce Cheney	$\mathbf{2 , 9 1 2 , 7 9 0}$	$\mathbf{4 8 . 8 4 7 \%}$	Republican
Albert Arnold Gore Jr.- Joseph Isadore Lieberman	$2,912,253$	$\mathbf{4 8 . 8 3 8 \%}$	Democratic

How much would it cost to build a wall along the U.S. - Mexico border?

https://en.wikipedia.org/wiki/Mexico\�\�\�United_States_border

A Common Vision for the Undergraduate Mathematics Program in 2025

Why modeling?
-All national math organizations support modeling -Engages students
-Establishes link between math and the real world
-Can be integrated in all pathways
-The problems we assign can be altered slightly to increase modeling.
-It's fun; it's relevant

Thank You!

Jim Ham

finm Delta College

jaham@delta.edu
Slides: http://websites.delta.edu/jaham/slidesMichMATYC101516.pdf Excel file: http://websites.delta.edu/jaham/MichMATYC101516.xIsx

$42^{\text {nd }}$ Annual Conference November 17-20, 2016

Denver, CO

